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Abstract: As education shifts toward digital learning environments, new assessments
are needed to evaluate not only what students know but also how they learn using
available tools and resources. The OECD Programme for International Student As-
sessment (PISA) 2025 Learning in the Digital World (LDW) assessment addresses this
challenge by engaging students in open-ended, interactive tasks that require them to
apply learning content to solve inquiry-based problems. This paper focuses on two key
scientific inquiry strategies assessed through LDW tasks: Control of Variable (CoV),
which reflects how systematically students conduct inquiry experiments, and Deriving
Relationship from Data (DRD), which involves interpreting relationships or patterns
from the experimental results. We present a scoring rubric designed for fine-grained
analysis of student performance, allowing for partial credit to be linked to degrees of
applying and reasoning with the strategies to derive solutions to assigned problems.
Using a learning-by-modeling task in the LDW framework, we apply this rubric to pilot
data collected from 6,800 students across 63 countries. Our findings show that stu-
dents’ success with the CoV and DRD strategies is influenced not only by prior
knowledge but also by how they engage with instructional phases and utilize digital and
scaffolding tools during the task.

Keywords: computational problem-solving, scoring rules, digital learning environ-
ment

1. Introduction

As digital technologies become more prevalent in education, there is a growing recognition
that assessments must evolve beyond traditional testing measures of static content knowledge
(NRC, 2012; OECD, 2017; Vo & Simmie, 2025). Assessments need to evaluate how students
learn, apply, and adapt their learning and understanding in interactive, real-world problem-
solving contexts — key competencies emphasized globally as part of 21 century education
reform (Chu et al., 2017; Griffin et al., 2012). The Organisation for Economic Co-operation and
Development's (OECD) Programme for International Student Assessment (PISA) 2025 Learn-
ing in the Digital World (LDW) assessment marks a significant advance in this area. This in-
novative assessment immerses students in open-ended digital tasks, requiring them to en-
gage with instructional content and demonstrate strategic problem-solving skills using digital
tools to solve problems (OECD, 2023).

Unlike traditional assessments that rely on selected responses, LDW tasks are open-
ended, interactive, and simulate authentic learning. Students build and debug computational
artefacts, conduct experiments, analyze data, and reflect on progress. This shift aligns with a
trend towards active learning (Prince, 2004) and simulation-based assessments that better
capture complex inquiry and reasoning (Baker et al., 2016; Gobert et al., 2013). It embodies
the concept of “learning by doing”, allowing students to build and apply knowledge through
experimentation, feedback, and exploration. Consequently, LDW marks a significant shift from



traditional approaches, emphasizing active processes over static recall. Students must
demonstrate their development, integration of new information, testing ideas, and application
of strategies while using digital tools.

This change in assessment design demands new interpretations of student responses.
Traditional scoring methods that categorize answers as right or wrong in open-ended and
interactive tasks, like those in LDW assessments, fail to capture partial understanding, emerg-
ing reasoning, and strategic problem-solving. Effective assessments should evaluate both stu-
dents' final products and their processes. This highlights the need for scoring frameworks that
provide final scores (summative assessment) and detailed feedback to foster critical thinking
and problem-solving skills. Such feedback helps students and educators understand key
learning processes and identify improvement areas (formative insight).

This paper introduces a scoring rubric for evaluating students’ problem-solving strate-
gies within an LDW computational problem-solving task. The rubric uses partial-credit scoring
to capture the nuances of student reasoning and awards points that reflect their use of pro-
ductive problem-solving methods to achieve goals. The goal is to acknowledge students for
engaging in meaningful inquiry strategies and to gain insights into their problem-solving pro-
cesses. We focus on two core strategies that are crucial to scientific inquiry and central to the
LDW competency model: Control of Variables (CoV) and Deriving Relationships from
Data (DRD). CoV assesses how effectively students can design inquiry experiments that sys-
tematically change one independent variable while keeping other potential influencing factors
constant to isolate the effect of the variable being tested. DRD evaluates how well students
can interpret experimental results by analyzing generated data to identify patterns, correla-
tions, and causal relationships between variables. We chose to focus on these strategies be-
cause both are essential for interpreting scientific processes and are consistently emphasized
in science education frameworks as fundamental to inquiry and causal reasoning.

We tested our scoring rubric using data collected during a PISA LDW pilot study in 63
countries with 6800 students. Our findings show that students’ success with CoV and DRD
strategies is shaped not only by prior knowledge but also by how they engage with instructional
phases and use available tools during the task.

2. Background

Inquiry-based learning (IBL) facilitates active exploration and investigation of topics that inter-
est students (Pedaste et al., 2015). It encourages students to ask questions, gather evidence,
draw conclusions, and construct knowledge, fostering deeper understanding and critical think-
ing skills similar to the practices followed by professional scientists (Keselman, 2003). This
method is often regarded as supporting the development of problem-solving skills (Pedaste &
Sarapuu, 2006). In a comprehensive review of the literature, Pedaste et al. (2015) proposed
a synthesized framework for IBL consisting of five distinct inquiry phases: Orientation, Con-
ceptualization, Investigation, Conclusion, and Discussion. These phases form a cyclical and
iterative cycle of learning and problem solving and can be further divided into sub-phases. For
instance, the Investigation phase is divided into three sub-phases: Exploration, Experimenta-
tion, and Data Interpretation, involving tasks such as generating hypotheses, planning and
designing experiments, and analyzing data to draw conclusions.

A central aspect of the Experimentation and Data Interpretation sub-phases is the abil-
ity to design and conduct valid experiments. In science education, this centers on two crucial
inquiry skills: control of variables (CoV) and deriving relationships from data (DRD) strat-
egies, which are the focus of the current study. The CoV strategy refers to a student’s ability
to manipulate one independent variable at a time while keeping others constant to establish
relationships between the independent and outcome variables. This skill is essential for en-
suring that observed effects can be attributed to the variables being tested, rather than being
confounded by uncontrolled factors (Chen & Klahr, 1999). A substantial body of research has
explored how this strategy develops (Kuhn, 2010; Zimmerman, 2007) and how educators can
best support its development (see Schwichow et al. (2016) for meta-analysis). However, find-
ings remain mixed, and only a few empirical studies have examined how students enact this



strategy using process-level data. For instance, Schwichow et al. (2016) conducted a compre-
hensive meta-analysis of 72 intervention studies focused on CoV instruction, reporting an
overall positive effect of teaching CoV (mean effect size = 0.61). However, they also found
substantial variability across studies, influenced by factors such as the type of instructional
support, the assessment method, and whether feedback or demonstrations were included in
the intervention. These contrasting outcomes suggest that students' performance on CoV
tasks may depend on additional contextual or behavioral factors, highlighting the need to go
beyond static outcome measures and explore how students engage with tasks at the process
level.

Complementing CoV is the DRD strategy, emphasizing students’ ability to interpret
data patterns and infer relationships between variables. Although DRD is a critical aspect of
the inquiry process, it has attracted comparatively less attention in the literature. For instance,
prior studies have shown that students struggle to apply DRD strategies such as recognizing
relevant trends, distinguishing between causal and correlational patterns, and expressing find-
ings through models or graphs (Donnelly-Hermosillo et al., 2020; Masnick & Klahr, 2003).
These challenges highlight the need for targeted assessments that can capture students’ de-
veloping inquiry skills.

Digital assessments like the PISA LDW offer significant potential for exploring students’
understanding of variable reasoning and data interpretation skills. The interaction data, along
with process data captured through digital logs, can provide deeper insights not only into
whether students solve tasks correctly or incorrectly but also into how they approach, engage
with, and navigate the investigative phases of inquiry. This study aims to provide a process-
oriented perspective on how students develop inquiry skills in digital environments by analyz-
ing these strategies through log-based analysis and rubric-aligned scoring.

3. Methodology
3.1 LDW Unit Description

To assess students’ application of CoV and DRD strategies in a digital inquiry setting, we
analyzed student interaction data for the “Increasing Tomato Yield” Unit within the PISA LDW
framework. The Example Unit is a 30-minute interactive assessment task that follows the four-
phase structure of LDW: Show, Learn, Apply, and Reflect.

1. Intro and Show phase (Pre-test): The unit begins with a static introductory page that
outlines the unit's overall goals and illustrates a real-world scenario related to variable
relationships. This is followed by the Show phase, which includes four pre-test items
designed to assess students’ prior understanding of core concepts. These items meas-
ure students’ ability to design controlled experiments, interpret variable relationships
in graphical form, and draw inferences from visual data. They establish a baseline be-
fore students engage in scaffolded learning activities.

2. Learn phase: During this phase, students receive guided instruction from a virtual
tutor as they complete a series of scaffolded tasks. These tasks help familiarize stu-
dents with the experimental interface and provide hands-on experience using the CoV
strategy to design controlled experiments. Additionally, students learn to apply DRD
strategies, such as generating graphs to interpret their experimental results. Scaffold-
ing is provided through example solutions and correct answers after each task. This
approach allows students to practice selecting variables, conducting controlled exper-
iments, and matching outcome patterns to graphs. The goal of this phase is to ensure
that all students have the foundational knowledge needed to engage productively with
the remaining tasks in this unit.

3. Apply phase (Comprehensive Challenge task): In this phase, students encounter
an open-ended task in a new but related context, where they must independently apply
the strategies they learned earlier. This phase focuses on three key objectives:

i) Designing valid experiments using the CoV strategy.



i) Applying the DRD strategy to choose the graph that accurately represents the re-
lationship between variables.

iii) Identifying the subset of experiments that support the relationships between inde-
pendent and outcome variables.
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Figure 1. A prototype of the Challenge task.

In contrast to the Learn phase, students do not receive real-time guidance or access
to final solutions during the Challenge task. However, they can refer back to the anno-
tated solutions from the Learn phase for help. Additionally, a "Check My Work" feature
is available that provides feedback on whether the graphs and experiments they have
chosen accurately represent the underlying relationships (see Figure 1). The overall
assessment adopts “a low threshold, high ceiling” approach that enables all students
to make some progress while allowing more advanced learners to demonstrate deeper
reasoning and mastery of problem-solving using the CoV and DRD strategies.

4. Reflect phase: This phase consists of three brief self-assessment tasks. First, stu-
dents evaluate whether they could not accomplish, partially accomplished, or fully ac-
complished each of the three sub-goals in the Challenge task. Second, they reflect on
their emotional state during the problem-solving (for example, feelings of confusion or
boredom). Third, they indicate how difficult they found the task to be, and the amount
of effort required to solve it. These reflections provide valuable insights into students'
self-regulation and perceived performance.

While each phase of the task contributes to the overall learning experience, this paper specif-
ically evaluates student performance during the Challenge task. In this task, students inde-
pendently demonstrate their problem-solving strategies. Additionally, students’ responses to
the Show phase questions were scored to assess their prior knowledge, which is included in
the analysis to provide context for their performance in the Challenge task.

3.2 Rubric Development

The framework for the challenge task was developed using a partial-credit system that evalu-
ated students' use of the CoV and DRD strategies. Instead of assigning binary scores, we
awarded points for both complete and partially correct responses.

The rubric is structured around three sub-goals of the Challenge task: (1) selecting
correct relationships and graphs (DRD), (2) identifying relevant experiments (CoV), and (3)
assessing the quality and coverage of the designed experiments (CoV). For each sub-goal,
the rubric criteria were defined to reflect levels of correctness, completeness, and strategic
execution. A summary of these components, illustrated with an example task — “Increasing



Tomato Yield,” which includes three variables of interest (sunlight intensity, soil type, and
amount of water used) is provided in Table 1.

To assess DRD strategies, the rubric evaluated whether students correctly identified if
each independent variable (sunlight intensity, soil type, and amount of water used) influenced
the outcome (tomato yield) and selected the appropriate graph to represent that relationship.
Partial credit was awarded to students who recognized the general direction of the relationship
but overlooked more nuanced patterns. Additionally, students received points for selecting a
subset of experiments that clearly demonstrated the effect of a variable, reflecting their skill in
interpreting and choosing informative data.

For CoV, the rubric assessed both the quality and coverage of students’ experiments.
Quality was evaluated based on whether students systematically held one variable constant
while varying another, which indicates strategic planning. Coverage was determined by the
number of unique experiments conducted by the students. Full credit was awarded for com-
plete, well-controlled experiments across both soil conditions, while partial credit was given
for incomplete or partially controlled experimental designs.

Table 1. Rubric for scoring students’ inquiry tasks
Goal

Max
points

Points
Awarded

Sub-goals Example
Design experiments to investigate how
light and water affect the number of toma-
toes produced, and check whether the re-
lationships depend on soil type.

Tomato yield is not impacted by soil type (par- 1 8

DRD Choosing the cor-

rect relationship
and graph (varia-
ble-1)

tial credit for choosing “no”)

Tomato yield increases from low to normal
sunlight intensity conditions, but drops for high
light intensity conditions (e.g., non-linear pat-
tern)

Choosing the cor-
rect relationship
and graph (varia-
ble-2)

Tomato yield is influenced by the amount of
water used (partial credit for choosing “yes”)

Tomato yield increases linearly with the
amount of water used for a soil type

Choosing the cor-
rect experiments
(variable-1)

Selecting experiments that show the correct
water use-tomato yield relationship

Choosing the cor-
rect experiments

Selecting experiments that show the correct
sunlight intensity-tomato yield relationship

(variable-2)
CoV Coverage of ex- 3-5 unique experiments conducted; may
periments cover only part of a variable set

6—11 experiments conducted; possibly covers
2 conditions for 1 variable

12 experiments conducted; covers all combi-
nations of 2 variables while holding one con-
stant

Quality of experi-
ments

Unpaired Incomplete: Held water use or
sunlight intensity constant for only one soil
condition and only one other variable

Unpaired Complete: Held water or light con-
stant for only one soil condition, but did this
for both light and water

CoV Complete: Exhaustively held soil type
constant while varying both water and light

3.3 Data Collection

This data was collected as part of an OECD PISA 2025 LDW pilot study. The pilot was ad-
ministered in 63 countries and involved 6,800 students. Students completed a series of LDW



prototype units under standardized assessment conditions using a digital platform that auto-
matically recorded detailed interaction log data. Ethics approval and data handling protocols
adhered to OECD standards and local requirements in the participating countries.

For this paper, we specifically focus on data from one prototype unit — the Increasing
Tomato Yield Unit — designed to assess students’ ability to conduct controlled experiments
and derive relationships from data. The dataset contains a varying number of log events
across countries, with an average of 34,275 events (Minimum = 16,536 events, Maximum =
91,462 events, and standard deviation = 12,465 events). Regarding student participation, the
number of students ranged from 52 to 239, with a mean of 108 students per country.

We extracted students’ interaction logs from the Show phase and the Apply phase to
answer questions. We preprocessed them to capture prior knowledge (via pre-test questions)
and to analyze the development and application of CoV and DRD strategies in the Challenge
task (Apply phase).

3.4 Data Preprocessing

We first transformed the raw interaction log data from the Challenge task into a structured
format to facilitate rubric-based scoring. This process involved extracting key events from each
student’s log file, including (1) experimental trials (i.e., selected values for sunlight intensity,
soil type, and the amount of water used); (2) corresponding outcome values (e.g., number of
tomatoes); (3) chosen graphs; (4) subsets of experiments selected to justify variable relation-
ships; and (5) the use of the “Check My Work” feature. We then parsed and aggregated these
events to identify unique experiments and evaluate whether students systematically varied
one variable while keeping others constant, which is a key criterion for scoring the CoV strat-
egy. For scoring DRD, we analyzed students' graph selections and assessed whether the
chosen subsets of experiments provided sufficient evidence for determining the variable rela-
tionships, and if the chosen relation was correct. This processing was conducted using custom
scripts developed in Python. The final dataset included individual student scores for each ru-
bric item, along with metadata such as country and pre-test scores.

3.5 Data Analysis

Following preprocessing and rubric-based scoring, we conducted descriptive and inferential
analyses to examine student performance patterns during the Challenge task and identify fac-
tors that may influence performance, such as prior knowledge and task engagement.

First, we calculated summary statistics, including means, standard deviations, and
score distributions for total performance scores in the Challenge task, individual DRD and CoV
components of the scores, and pre-test scores across all students to identify overall
trends. Next, to analyze learning transitions, we divided the students into low and high-perfor-
mance bands using a median split for both pre-test scores and Challenge task scores. This
categorization resulted in four transition groups:

e Group-1: LowPre-test > LowTotal-score
e Group-2 HighPre-test > LowTotal-score
e Group-3: LowPre-test - HighTotal-score

e Group-4: HighPre-test > HighTotal-score.

These groups allowed us to explore how students’ performance changed from the pre-test to
the final task. For instance, we identified how many low pre-test scorers' performances im-
proved in the final task (Group 3) and how many high pre-test scorers’ performances declined
(Group 2) in the final task. Finally, we investigated the role of potential mediating factors such
as students’ engagement during the Learn phase and Challenge task. Specifically, we com-
pared metrics such as the amount of time spent in each phase and the use of digital tools
(e.g., graph or feedback buttons) across the four groups (Groups 1-4). To ensure robust anal-
ysis of timing-related metrics, we applied a 98% winsorization to mitigate the influence of spu-
rious outliers and removed any missing values to maintain data quality.



4. Results and Findings
4.1 Descriptive statistics

Challenge task: Figure 2 (left panel) shows the distributions of students’ total scores and their
individual DRD and CoV scores (bottom panel) during the Challenge task. In terms of students’
overall performance in the task, we found that most students scored between 0 and 5 (Mean
= 3.62, SD = 3.5, out of a maximum of 14). Additionally, the right-skewed distribution of the
total score suggests that only a small number of students achieved high scores. At the same
time, a large proportion demonstrated either partial understanding or incomplete execution of
strategies.

When examining DRD and CoV scores separately, we found that most students strug-
gled with the DRD strategy. The average DRD score was relatively low (Mean = 1.57, SD =
2.23, out of a maximum of 8), with many students (50%) scoring 0O points. These findings
suggest that students had difficulty recognizing patterns in the experimental table, selecting
correct graphs, or determining whether a variable had an effect. In contrast, students per-
formed relatively better on the CoV strategy (Mean = 2.04, SD = 1.59, out of a maximum of
6). While a few students achieved full points for implementing the CoV strategy, a larger pro-
portion scored between 1 and 3 points, demonstrating partial understanding of designing con-
trolled experiments.
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Figure 2. Distribution of total scores for the Challenge task (top-left panel), individual DRD
score and CoV score distribution (bottom-left panel), and pre-test scores (right panel)

Pre-test scores: Figure 2 (right panel) displays the distribution of students’ pre-test scores.
On average, students scored 4.59 points (SD = 2.26) out of a maximum of 9 points, indicating
that most approached the Challenge task with some preliminary understanding of CoV and
DRD concepts.

4.2 Relationship between prior knowledge and Challenge task performance

Figure 3 presents two complementary views of the relationships among pre-test scores, total
score in the Challenge task, and individual CoV and DRD scores. Treating the score as a
ranked variable, we conducted a Spearman rank-order correlation to determine the relation-
ship between students’ prior knowledge and their total score in the Challenge task.



Correlation Analysis: The correlation matrix (left panel) reveals a strong positive correlation
between CoV and DRD scores (p = 0.62), indicating that students who effectively designed
control experiments were also more likely to accurately identify and represent relationships
from the data. We also found moderate correlations between students’ pre-test scores and
their performance on the Challenge task: CoV (p = 0.51), DRD (p = 0.47), and total scores (p
= 0.54). These results suggest that students with greater prior knowledge were generally more
successful in applying inquiry strategies during the task. However, the moderate strength of
these correlations implies that prior knowledge alone does not fully explain students’ success
in applying CoV and DRD strategies, reinforcing the importance of process-based assess-
ment.
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Figure 3. Correlation Matrix (left panel) and Score Distribution Plot across pre-test score and
total score (right panel)

Transition groups: The heatmap in Figure 3 shows the distribution of students in four perfor-
mance transition groups (Groups 1-4 defined in Section 3.5). Results indicate that students
with higher prior knowledge were more likely to achieve high scores in the Challenge task,
with 64.4% of high pre-test scorers remaining in the high-performance band (Group 4). In
contrast, 77.5% of students with low prior knowledge stayed in the low-performance band
(Group 1), suggesting limited improvement. Additionally, 22.5% of students with low prior
knowledge performed better in the Challenge task (Group 3), while 35.6% of high prior
knowledge students showed declining performance (Group 2). These transitions highlight var-
iability in students’ performance and raise questions about factors affecting their success or
struggle.

4.3 Exploratory Analysis

Table 2 summarizes the CoV and DRD scores, time spent in task phases, and digital tool
usage across four transition groups. Kruskal-Wallis tests showed significant differences
among groups in score and time metrics (p < .001), confirmed by post-hoc analyses. Chi-
squared tests also indicated significant differences in tool usage (Graph-button use: x*(3) =
2507.60, p < .001; Check-My-Work button: x*(3) = 688.09, p < .001). Students who improved
(Group-3: Low->High) and those who remained high performers (Group-4: High->High) had
higher CoV and DRD scores, spent more time in the Learn and Challenge phases, and utilized
digital tools such as the graph and check-my-work buttons more frequently. Meanwhile, stu-
dents who remained low performers (Group 1) showed the least engagement across all di-
mensions.

Table 2. Summary of score-metrics, time-duration metrics, and tool-use metrics for the four
transition groups

Score-related metrics  Time-related metrics (in seconds)  Tool-related Met-

rics
Transition Aver-  Average DRD Average Average Average % who % who
Group age Score Time spent Time Time used used

CoV (SD) in Show spentin  spentin Check-




Score Phase Learn Chal- Graph  My-

(SD) (SD) Phase lenge Button  Work
(SD) task Button
(SD)
Group-1: 0.99 0.18 219 194 67.5 30.1%  28.6%
Low=>Low (0.89) (0.45) (177.8) (193.0) (75.4)
Group-2: 1.50 0.29 298 266 91.8 52.3%  37.3%
High->Low (1.05) (0.55) (175.8) (194.8) (75.0)
Group-3: 2.91 2.79 505 570 223 91.3% 62.3%
Low=>High (1.15) (1.74) (96.6) (201.0) (109.3)
Group-4: 3.74 4.10 539 655 271 96.2%  62.5%
High-»High (1.29) (2.34) (73.1) (176.3) (109.6)

5. Discussion, Limitations and Future Work

In this study, we examined how students applied two key scientific inquiry strategies — CoV
and DRD - during a digitally administered assessment. Combining rubric-based scoring with
log data provided insights not only into student outcomes but also into how engagement and
tool use shaped performance.

Students generally performed better on CoV than DRD, aligning with prior evidence
that CoV is more teachable and frequently emphasized (Schwichow et al., 2016). DRD re-
mained challenging, with nearly half of students scoring zero, underscoring persistent difficul-
ties in recognizing patterns and casual relationships from data (Donnelly-Hermosillo et al.,
2020; Masnick & Klahr, 2003). Importantly, our transition analysis showed that performance
was not determined by prior knowledge alone: while many students remained within their initial
performance bands, a subset improved or declined significantly, highlighting diverse learning
trajectories.

Engagement emerged as a key mediating factor. Students who invested more time in
the Learn and Challenge phases generally outperformed their peers, particularly those who
remained in the low-performance group. This suggests that scaffolded practice, where stu-
dents first observe worked examples and then apply strategies independently, supports
deeper understanding and transfer of CoV and DRD skills. The use of digital tools also differ-
entiated higher-performing groups: frequent interaction with the graphing feature promoted
data interpretation, while the “Check-My-Work” button provided timely formative feedback, en-
abling students to refine experimental designs. These results align with prior research indicat-
ing that structured opportunities for practice, combined with feedback, enhance inquiry pro-
cesses (Hattie & Timperley, 2007; Schwichow et al., 2016).

Despite these insights, several limitations should be acknowledged. First, our analyses
were exploratory and limited to two strategies within a single LDW unit; task-specific effects,
therefore, constrain generalizability. Future work should expand to additional inquiry compo-
nents (e.g., hypothesis generation, error analysis), apply sequential or temporal methods (e.g.,
Markov models) to capture strategy development, and explore cross-national differences in
performance. Second, engagement was proxied primarily by time, which may also include off-
task behaviors. Richer interaction measures are needed to distinguish productive form unpro-
ductive engagement. Third, while our rubric was grounded in theory, formal validation of its
psychometric reliability and transferability across contexts remains an important next step.
Lastly, this study did not explore motivational or self-regulated learning (SRL) factors. Future
research could investigate how students’ motivation, goals, and self-regulated learning (SRL)
behaviors contribute to performance differences.

Overall, this study demonstrates how open-ended digital assessments, combined with
process-level analysis, can provide rich insights into not only what students learn but also how
they engage with and learn core scientific inquiry strategies. These findings offer valuable
implications for designing learning environments that more effectively scaffold students’ use
of CoV and DRD strategies in authentic, inquiry-driven contexts.
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