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Abstract: Adaptive cueing in currently-existing technology-enhanced learning (TEL) 

often prioritizes performance metrics over the cognitive load experienced by a learner, 

thereby losing comprehensive view to realizing learning outcomes. Cues e.g., visual, 

auditory, tactile cues have been shown to be effective in guiding the learner’s attention 

and managing cognitive load. However, offering cues to promote one’s skill learning 
based only on individual performance indicators can be misleading, since added to the 

performance scores, cognitive aspects and learning ability of the learner are also 

crucial for effective learning. Though the cognitive aspects are subtle in nature, yet 
these can be harnessed with the use of neurophysiological tools. Tools like Eye-gaze 
tracking and Electroencephalography (EEG) offer avenues to infer attention, memory 
load, and decision-making. Accessing such neurophysiological signals need one to 
deal with technical barriers, e.g., multi-modal synchronization, latency constraints, and 
real-time signal processing, hindering their adoption in dynamic learning environments. 
Here, we present the architecture that can be used to realize and overcome the 
technological challenges faced while integrating the cueing paradigm with 
synchronized multi-modal neurophysiological signal acquisition. This platform (i) 
estimates cognitive load through synchronized eye-tracking and EEG data during task 
execution, (ii) correlates it with performance outcomes, and (iii) generates adaptive 
cues tailored to individual cognitive profiles to optimize learning efficiency. Further, by 
integrating with existing platforms like LAReflecT, our approach provides actionable 

feedback for both learners and trainers. The broad aim is to enable implementation of 

cognition-aware skill learning platforms with adaptive, individualized cueing to foster 
effective learning. 
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1. Introduction 
 
Modern technology-enhanced learning (TEL) systems increasingly incorporate data-driven 
adaptive cueing aimed towards personalizing cue delivery and cueing intensity in real-time 
based on individual learning preferences and performance indicators (Wang & Song, 2024). 
Cueing techniques, like visual, tactile, and auditory cues, are often integrated into such 
platforms aimed to enhance learning outcomes (Maćkowski et al., 2022; Xie et al., 2016b). 
However, offering cues to promote one’s skill learning based only on individual performance 
indicators can be misleading, since the performance scores by themselves do not capture 
cognitive aspects and learning ability of the learner (Short, 2021) both of which are crucial for 
effective learning. This has remained largely unexplored. To address this, there is a need for 
a deeper investigation of interactive learning platforms that are data-driven and can generate 
real-time cueing while considering both the performance score and cognitive aspects of 
learning.  



Research has shown that learning platforms augmented with cueing techniques, like visual, 
tactile, and auditory cues, can help in visual attention guidance, effective management of 
cognitive load, etc,. leading to measurable improvements in learning performance (Xie et al., 

2017; Xie et al., 2016b; Lavie et al., 2004). Such cues, which can be delivered in the form of 

visual highlights, audio prompts, or haptic feedback, can direct the learner's focus to relevant 
information, reducing the cognitive effort required to recognize and process key information of 
a task. However, the question lies in devising architectures that can allow synchronized fusion 
of the cueing modalities to the learning platform that is equipped with an ability to quantify the 
learner’s cognitive load while interacting with the platform. This can offer two-fold benefits with 
regard to the learner and the trainer. Specifically, the learner can get estimates on his / her 
cognitive load that can be cue and task-specific. Also, the trainer can understand which cues 
work best for the learner so that the trainer can deploy these in an individualized manner to 

facilitate the learning process. Such individualization or individual-centered (Xu & Woodruff, 

2017) approach can facilitate effective learning.  
Recent advances in neuroscience and educational technology have made it possible to 

assess cognition in skill learning environments. In particular, multiple modalities, such as Eye-

gaze tracking and Electroencephalogram (EEG) have emerged as promising modalities (An 

et al., 2018; Orovas et al., 2024) for inferring attention (Vortmann et al., 2022b), working 

memory load (Kosachenko et al., 2023), and strategies for decision making (Rojas-Martínez 

et al., 2025), which are crucial during task execution. Exploiting multi-modal data, such as 

physiological biomarkers is important given that this data can offer signatures to one’s 

cognitive processes that are critical for effective learning (Azevedo et al., 2022; Moon et al., 

2022; Shoukry & Gobel, 2017). These physiological signals provide involuntary insights into 

one's cognitive aspects of learning, offering a robust complement to traditional self-report or 

only performance-based evaluations. Given the importance of physiological biomarkers, 

researchers have been investigating various indices, such as the theta/alpha ratio in specific 
brain regions (Tan et al., 2024; Kosachenko et al., 2023), fixation duration, saccades, pupil 
dilation, etc. (Ekin et al., 2025; Kosachenko et al., 2023; Rodemer et al., 2023) as indicators 
of one’s cognitive load. However, implementing real-time, data-driven learning platforms with 
multi-modal sensing ability (such as integrating with different physiological sensing, e.g., Eye-
gaze tracking and EEG) presents substantial technical challenges. These include meeting 
latency requirements of the order of milliseconds, synchronizing heterogeneous data streams 
across different data acquisition systems like EEG and Eye-gaze tracking running at different 
sampling rates, and handling computationally-intensive signal processing in real-time while 
maintaining data quality and user privacy (Jamal et al., 2023; Cheng et al., 2020). This opens 
avenues to investigate how such a learning system can be built and to address the specific 
technological challenges involved in its implementation.  
Here we present the architecture that can be used to realize the technological challenges 
faced while implementing such multi-modal learning platforms capable of offering 
individualized cues while considering both one’s performance and cognition, which are crucial 
for fostering effective learning. Educational platforms such as LAReflecT (Majumdar et al., 
2025) offer an open platform that can be augmented by integrating the pointers to one’s 
cognitive load acquired by processing multi-modal data. Together, the overall architecture of 
the platform allows for seamless integration with LAReflecT to present (i) the estimated 
cognitive load through acquiring physiological data, using Eye-gaze tracking and 
Electroencephalography synchronized with task execution, (ii) the learning outcomes in terms 
of task performance, and (iii) reports that help in individualized cue selection. Specifically, 
inputs from the physiological indices will be used to estimate one’s cognitive load while 
identifying cues that facilitate learning instead of posing a cognitive load to the learner, 
adversely affecting the learning outcomes. Subsequently, the estimated cognitive load will be 
fused with one’s task performance by a strategy generator to offer an adaptive learning 
environment with cues being carefully selected to foster effective skill learning by the learner.  
 

2. Literature Review 
 



2.1 Role of Cues in Learning  
 

In the context of Technology-enhanced learning, we refer to the use of cues as a 
modality to promote one’s physical interaction with learning materials so as to enhance a 
learner’s comprehension and retention (Huang et al., 2024). Reports show that the choice of 
cue has been made with an aim to guide one’s attention and manage the learner’s cognitive 
load (Huang et al., 2024; Li et al., 2024). For example, the cues can be delivered in the form 
of visual highlights in a digitized environment, or as audio prompts generated by a system or 
the trainer, or haptic feedback triggered by a system or given by a trainer. Specifically, 
research shows that tactile cues that can be delivered through vibrating devices, touch/tap, 
are processed by the somatosensory cortical areas and influence decision making and can 
improve one’s task performance in navigation skill learning (Romo et al., 2012). Similarly, 
visual cues that could be delivered via bright, attention-grabbing colors, like red, can direct a 
learner’s attention towards salient features. These stimuli are primarily processed by the 
occipital lobe and are connected with attention and decision-making networks of the brain 
(She et al., 2024). Likewise, auditory cues, such as beeps or verbal instructions, are processed 
in the temporal lobe and have been shown to improve one’s task performance by signaling 
the timing of an action or providing feedback without interrupting the visual focus on the task 
(Schaefer, 2014). In addition to cue selection, the learning platform needs to adaptively 
generate context-specific cues to foster improved learning. This is because it can bring 

pedagogical implications. For example, a learner performing an experiment in a virtual lab 

might score well in spite of facing difficulty and struggling to wire a circuit. Different 
physiological biomarkers, e.g., those related to EEG and eye-gaze might be used to infer that 
the learner is experiencing high cognitive load, though scoring well. Such task performance 

under high cognitive load can adversely affect the learning (Cowley et al., 2012) and retention 

of the skills learnt and higher order learning which in the long run might affect performance. In 
such a scenario, a context-relevant cue offered adaptively can foster improved learning. 
Specifically, visual cue e.g., a highlight on the correct wiring terminal can help provide the hints 
and thus reduce cognitive load. Also, such a cue can prompt the instructor to provide 
assistance in terms of presenting concepts of wiring to the learner. To summarize, a well-
designed and carefully chosen cue offered adaptively can act as a scaffold in helping the 
learners improve their task performance. 
 

2.2 Cognitive Load due to Cues Demonstrating Disadvantages of ill-chosen Cues 
 

Learning is most effective when the total cognitive demand placed on a learner’s 
working memory is optimal (Sweller, 1988; Cognitive Load Theory). While cues are often 
employed to reduce extraneous cognitive load by simplifying instructions and guiding 
attention, they can themselves become a source of extraneous cognitive load. This is 
particularly true when based on specific contexts, simultaneous delivery of multiple cues can 
be overwhelming for the learner’s working memory capacity (Sweller et al., 2011) deteriorating 
one’s learning outcomes. The nature of the cue also plays a significant role. For example, 
visual cues are typically processed very quickly, but can be a source of distraction if not 
carefully managed (She et al., 2024). Tactile cues, on the other hand, can be applied to 
specific anatomical locations having higher concentration of mechanoreceptors thus have high 
level of tactile acuity, such as thighs and wrists (Raghuvanshi et al., 2025), while it might serve 

to distract the learner doing a task (Patelaki et al., 2023b). Again audio cues can also 

contribute to cognitive load if they are presented in a confusing or overwhelming manner, such 
as not using a metronome [steady rhythm produced by a regular, timed beat to maintain a 
consistent tempo; (Lee et al., 2022)] during a task. Furthermore, cognitive load could be 
heavily influenced by a learner's individual learning preferences that can vary with learners 
being either visual, auditory, and/or tactile learners (Pashler et al., 2008). A mismatch between 
the cue modality and a learner's preference can increase extraneous cognitive load, as the 
learner must devote additional cognitive effort to process information in a less-than-optimal 



format. To summarize, cues not properly chosen can add to one’s cognitive load hindering the 
learning process instead of facilitating the learning outcomes. 

 

2.3 Technologies to Assess Cognitive Load 
 

The conventional learning platforms often focus on one’s task performance metrics, 
such as test scores as means to evaluate learning. However, these often neglect the other 
critical part of the learning evaluation process which is the underlying cognitive processes that 
can also influence one’s performance in the skill learning (Gkintoni et al., 2025; Pawar et al., 
2017). One of the possible reasons might be that the estimation of the underlying cognitive 
processes is often challenging. In fact, such estimation often requires one to use technological 
platforms to access the implicit physiological measures that can be used to estimate one’s 
cognitive load (Gkintoni et al., 2025). However, with technological progress, harnessing the 
subtle physiological signals, such as gaze fixation on a stimulus, brain signals, etc. in real-
time is now a reality.  

Specifically, one’s eye movement can be captured using Eye-gaze trackers which is a 
powerful non-invasive modality for understanding a learner’s visual attention. Tapping into 
one’s eye movement data is important for getting estimates of one’s cognitive load given that 
eyes are “window to one's mind” (König et al., 2016). The movement of the eyes are controlled 
by attention networks within the brain with research showing that such attention networks are 
influenced by cognitive processes (Posner & Petersen, 1990). Data on the eye movement 
captured by Eye-gaze trackers can be processed to extract various gaze-related indices such 
as fixation duration, saccades, pupil dilation, etc. which have been shown to be strong 
biomarkers of one’s cognitive load (Ekin et al., 2025; Kosachenko et al., 2023; Rodemer et al., 
2023), like, long fixation duration on a region of interest can indicate higher cognitive 
processing. Again, rapid eye movements might suggest a learner is searching for information 
(Ekin et al., 2025), etc. Pupil dilation is also a robust physiological marker that has been shown 
to correlate with cognitive effort (Rodemer et al., 2023) during a task. 

Again, one’s brain activation can be quantified by processing data captured by an EEG 
device. This offers direct measure of one’s brain activation with high temporal resolution which 
in turn can be mapped to the cognitive load experienced by a learner. The brain activation can 
be realized by processing the EEG signals belonging to different frequency bands, such as 
alpha band (8 to 13 Hz), and theta band (3 to 7 Hz), etc. that have been shown to be related 
to one’s working memory load, and attention (Tan et al., 2024; Kosachenko et al., 2023). 
Researchers have reported that one’s working memory overload corresponds to increased 
activity in alpha wave activity, which can be captured by tapping the EEG signal from the 
Frontal region of the brain (Kosachenko et al., 2023).  

The implications on the Eye-gaze and the brain activation under cases of cognitive 
load for healthy elderly and those with neurological disorders when being involved in a skill 
learning scenario might convey differentiated observations. In short, multi-modal data analysis 
in learning scenarios wherein one can analyze both eye-gaze and EEG signals of such 
individuals along with monitoring one’s task performance can offer a comprehensive view on 
one’s task-specific and cue-specific cognitive load along with performance ability. This 
information can be valuable for the learner himself / herself to get estimates of his / her 
cognitive abilities on the one hand, and clinical inputs regarding the choice of cues (that can 
be task-specific) that can help guide clinical decision-making by the caregiver or the trainer or 
the nurse to tune learning paradigms on the other hand with the overall aim being improving 
learning outcomes. 

Though physiology-based biomarkers can be used to estimate one’s cognitive load, 

yet, one needs to remember the ethical concerns related to individualized biomarkers. This is 
because one’s physiological data is intimate/personal, which can raise critical ethical and 
privacy concerns. To protect against such concerns, one needs to collect informed consent 
from the individual before collecting one’s physiological data followed by maintaining strict 
data governance while designating individuals with unique identification numbers rather than 
publishing individual specific information, such as name. Also, care needs to be taken to 



preserve such information on identification in a confidential and restricted repository so as to 
ensure protection of the individual against misuse of information. 
 
 

3. Architectural Framework Design while Integrating Multi-modal Data 
Acquisition 

 
This section outlines the conceptual architecture for a data-driven learning platform that uses 
multi-modal physiological data acquisition to adaptively generate context-specific cues to 
foster improved learning.  
 

3.1 Functional Requirements of the Architecture 
 

Building from the literature review, several key functional requirements can be 
identified. First of all, the system architecture will allow one to acquire real-time data from 
multiple physiological streams (e.g., eye-gaze tracking and EEG) synchronized with the 
learner’s task execution. To enable real-time adaptive cueing and data acquisition, the data 
processing pipeline will operate with minimal latency and must be time-synchronized to ensure 
a seamless and responsive user experience. Secondly, the architecture will enable use of 
statistical analysis models to process the raw physiological data and infer the cognitive load 
experienced by a learner. This platform architecture will include a “strategy generator” that 
fuses performance data with the estimated cognitive load to dynamically select and deliver 
individualized cues that optimize learning without causing cognitive overload. Thirdly, the 
architecture must be modular to seamlessly integrate with existing technology-enhanced 
learning platforms, like LAReflecT, allowing for the presentation of cues and the collection of 
performance data. These functional requirements are necessary for the system to provide 
reports and visualizations of cognitive load and performance that can be useful to both the 
learner and the trainer thereby facilitating deeper understanding of the learning process. 
 

3.2 Overview of System Architecture 
 

 The multi-modal-sensitive technology-enhanced learning system architecture (Fig. 1) 

is designed with the aim to build a multi-modal learning platform that delivers individualized 
cues by integrating both the learner’s performance and the cognitive load experienced by the 
learner (as estimated from the physiology-based biomarkers). The cue-specific physiological 

data will be captured using EEG (namely Starstim 8; Caravati et al., 2024) and eye-gaze 

tracking (namely Tobii 4C; Mallas et al., 2023) modules.  
These data streams will be pre-processed, synchronized, and sent to a Cognitive 

Estimator to quantify cognitive load based on various indices like pupil diameter, fixation 
duration, alpha power, etc. This cognitive load measure is combined with traditional 
performance metrics, such as task scores, within the Strategy Generator to create a learner-
specific adaptive strategy to send specific task parameters (namely the Task ID and Cue ID) 
to the Learning Task Controller. In turn, the Learning Task Controller chooses the task 
(corresponding to the Task ID from a task repository) along with appropriate cue modality 
(namely tactile, visual, auditory based on the Cue ID). This closed-loop process ensures that 
cue selection is dynamically tailored to facilitate effective skill learning. The architecture is 
compatible with platforms like LAReflecT, supporting integration of cognitive load estimation 
data and logistics sharing, performance tracking, and report presentation. 

 



 
Figure 1. Conceptual Architecture of the Multi-modal-sensitive Technology-

enhanced Learning System. 
 
 

3.3 Data and Analysis Models 
 
The system will use several types of models to function effectively. The data processing 
pipeline is shown in Figure 1. First, gaze-based cognitive load indicators like, pupil dilation 
(changes in pupil size indicating cognitive effort), blink rate (frequency of eye blinks), fixation 
dispersion (variability in fixation locations), etc., will be computed by processing gaze data 
acquired using the eye-gaze tracking module. This will be achieved by cleaning the raw data 
through interpolation or exclusion of invalid samples (blinks), and then identifying fixations 
using dispersion or velocity based algorithms, etc. Alongside, identifying rapid movements 
exceeding velocity threshold for saccade detection, which includes saccade-based metrics 
like, saccade amplitude (distance of eye movement), saccade velocity (speed of eye 
movement), saccade rate (frequency of saccadic movements) will also be computed. Finally, 
the fixation-based gaze metrics and saccade-based gaze metrics will be used as gaze-based 
biomarkers of cognitive load. This will be inspired by the previous work of our research group 
in India wherein we have shown the potential of gaze-sensitive digitized platform to estimate 
one’s cognitive load from gaze-related indices (Ekin et al., 2025; Kosachenko et al., 2023; 
Rodemer et al., 2023). 
Concurrently, EEG data will be processed through a standard signal-processing pipeline. This 
involves several steps like, artifact removal to filter out noise from sources like eye movements 
and muscle activity; bandpass filtering to isolate specific frequency ranges of interest; and 
then spectral analysis, such as a Fast Fourier Transform (FFT), to quantify the power of 
different neural frequency bands, such as, theta (3-7 Hz), which is associated with working 
memory and cognitive control, and alpha (8-12 Hz), which is inversely related to attention and 
cognitive effort. The theta/alpha ratio in specific brain regions (e.g., frontal and parietal lobes) 
is a robust indicator of cognitive load (Tan et al., 2024; Kosachenko et al., 2023). These EEG-
based features will be used as biomarkers of cognitive load. 
Once processed, the gaze and physiological features (i.e., the biomarkers) will be fused to 

train and run a cognitive load estimation model. This model will focus on picking up the relative 

changes in the task-specific biomarkers with respect to baseline metrics in an individualized 
manner (thereby taking care after the inter-person variability) to offer an output as an estimate 
of the learner’s cognitive load. This, together with performance scores, will be fed into the 
Strategy Generator (Figure 2) that will adapt the delivery of the type of cue to the learner, 
using either predefined rules (such as a state-machine representation) or a learning-based 
policy to optimize learning outcomes. 
 



 
Figure 2. Data flow diagram of the multi-modal-sensitive technology-enhanced 

learning system. 
 

4. Discussion and Future steps 
 

4.1 Significance of the Research 

 
The architecture presented here is significant because it provides a blueprint for moving 
beyond traditional performance-based learning and creating truly personalized and 
cognitively-aware learning environments that can optimize the learning experience and 
improve learning outcomes in an individualized manner. This system emphasises on multi-
modal physiological data streams capable of delivering EEG-related and gaze-related data at 
high temporal resolution to infer the cognitive load experienced by a learner. The system offers 
a more holistic and accurate understanding of the learning process and the learner. The ability 
to distinguish between performance issues caused by a lack of knowledge versus those 
caused by cognitive overload allows for more precise and effective interventions. 

 
4.2 Challenges and Limitations 
 
Implementing this architecture presents several technical challenges. The real-time 
synchronization of heterogeneous data streams from sensors operating at different sampling 
rates demands a robust, low-latency data acquisition and processing pipeline. Processing 
computationally-intensive physiological signals while ensuring data quality is another major 
hurdle (Jamal et al., 2023; Cheng et al., 2020)]. The accuracy of cognitive load estimation 
models can be constrained by the variability of physiological signals across learning contexts, 
as well as by non-technical factors such as language barriers. For instance, when one learner 
group consists of Japanese learners with varied language proficiency compared to another 

learner group, which comprises Indian learners. Though our proposed multi-modal-sensitive 

technology-enhanced learning system is neither presently a working prototype nor have 
undergone empirical validation, yet our proposed architecture can serve as a foundational 
building block to developing such learning systems that can facilitate effective learning.  
 

4.3 Future Steps 
 

In future, we will implement the architecture in an empirical study to quantify learning benefits, 

such as faster skill acquisition, improved knowledge retention, and reduced cognitive overload 
compared to traditional performance-based cueing systems. Here the focus will be on the 
development of the data acquisition and processing layers. This will involve creating a 
functional system for synchronizing and fusing eye-gaze and EEG data. Also, we will develop 
learning models and refine statistical models for cognitive load estimation. We plan to explore 
the possibility of using simple state-machine representation to more complex ones to 
implement the strategy generator suggesting adaptive variation in task difficulty and also use 
various cue types. Finally, the prototype will be integrated into an existing learning platform, 



like LAReflecT, to conduct a pilot study. This study will validate the system's ability to 
accurately assess cognitive load and demonstrate whether its adaptive cueing strategy leads 
to measurable improvements in learning outcomes. 
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