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Abstract:This paper presents the design of a sequenced chain of embodied learning
systems, to support students’ transition from basic concepts (such as proportion) to
more advanced ideas like slope and rate of  change, and thus integrate the three
concepts. Drawing on Tall’s (2003) notion of embodiment as a cognitive basis for
formal mathematics, and informed by enactivist pedagogy (Abrahamson et al., 2022),
the  approach  highlights  how  bodily  actions  can  ground  and  enrich  complex
reasoning.  In  this  design,  learners  progress  through  a  series  of  embodied
experiences that focus on 3 different kinds of understanding - spatial, numerical, and
graphical.  By sequencing interconnected systems – rather  than providing isolated
systems – we aim to examine how such chained embodied learning designs influence
students’ meaning-making across mathematical ideas. 
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1. Introduction

Recent interactive designs open up novel ways to understand and learn mathematics, by
allowing students to directly interact with mathematical entities, across topics such as natural
numbers  (De  Freitas  &  Sinclair,  2014)  algebra  (Weitnauer  et  al,.  2016),  proportion
(Abrahamson  &  Sánchez-García,  2016),  geometry  (Nathan  et  al.,  2022),  and  integers
(Elangaivendan  et  al.,  2023).  These  learning  systems also  vary  in  the  extent  of  bodily
involvement  they  invite—ranging  from  localized  touch-screen  actions  with  fingers,  to
movements  of  the  upper  body,  to  full-body  enactments.  Such  embodied  designs  allow
learners to perform physical actions that parallel mathematical operations. Examples include
combining objects to represent addition (De Freitas & Sinclair, 2014), imagining body parts
as mathematical entities (e.g. front part of hand till elbows as a line segment; Nathan et al.,
2022),  and  using  the  whole  body  as  a  resource  (e.g.,  walking  at  varying  speeds  to
experience  changing  rates;  Swanson  &  Trninic,  2021)  ).  Such  enactments  provide
opportunities for students to visualize, feel, and manipulate abstract concepts, making the
meanings of formal mathematics more transparent and accessible, compared to the opaque
use of algorithms promoted by dominant text-based modes.

Most embodied learning environments are based on stand-alone activities focusing
on a single concept, or various aspects of the single concept. Our work seeks to extend this
design approach, by exploring the nature of learning when different embodied systems are
connected in a sequence. Specifically, we investigate how learners could transition from a
foundational  concept  like  proportion  to  more  complex  ideas  such  as  slope  and  rate  of



change, through a chain of embodied activities. To traverse this progression, students start
with  embodied  experiences  that  serve as  initial  experiences  of  the  formal  mathematical
understanding. These experiences are then formalised using symbolic structures such as
graphs, numbers and equations. Here we present the design of such a sequenced system
and illustrate its potential using a vignette from a pilot study.

2. Theoretical Background

Tall  (2003)  describes  three  worlds  of  mathematics—embodied,  proceptual,  and
formal/axiomatic.  He argues that  while  the embodied mode cannot  serve as a basis  for
proof, it is essential as the foundation of human meaning-making. For instance, rather than
introducing  the limit  concept  in  calculus  purely  in  formal  terms  to  students,  Tall  (2003)
suggests developing meanings of math topics like limits, differentiability, and continuity by
allowing learners to interact with the mathematical topics in enactive way before moving to
formal mode. Recent embodied technologies enable engaging with mathematical concepts
in ways not possible through static, print-based resources. They help overcome cognitive
barriers  in  transitioning  across  topics  (for  example,  from  natural  numbers  to  integers)
through  interaction  with  tangible  interfaces.  In  his  approach,  software  tools  supporting
enactive controls such as zooming and sliding allow students to perceive differentiability
through local straightness and continuity through local flatness. These embodied perceptions
of  local  straightness and local  flatness serve as cognitive roots for  later  development  of
formal ideas of continuity and differentiability respectively (as illustrated in Figures 1 and 2,
using Desmos). Such enactments—sliding and zooming along a graph—enable learners to
feel continuity  and  differentiability.  This  allows  learners  to  develop  a  more  meaningful
understanding of functions, such as cases where a function is continuous everywhere but
not differentiable everywhere (like modulus function in Figure 1).

Figure 1. The modulus function y = x  appears locally straight everywhere when a square∣ ∣
box is slid along its graph (left). However, at the sharp corner, no amount of zooming reveals
local flatness. Thus, the function is locally straight everywhere but not locally flat at all points.



Figure 2. The parabola function on the other hand is locally flat at every point on zooming
and sliding along the graph of the parabola function

Recent  studies  have  sought  to  extend  this  embodied  research  perspective  to
classrooms,  through enactivist  mathematics  pedagogy  (Abrahamson et  al.,  2022).  Here,
learners  begin  by  developing  perceptual  strategies  in  response  to  a  problem,  which  –
through reflection, guidance from teacher and peer discussion – evolve into mathematical
concepts. For instance, in a study of learning proportions using an embodied interaction
system,  students  first  engaged  in  embodied  understanding,  which  was  then  gradually
transitioned into spatial and numerical reasoning, through the introduction of formal elements
such as cursors, grids, and axes. These helped reframe the initially qualitative discussions in
quantitative  terms.  This  approach  illustrates  how  embodied  learning  systems  can  be
designed to foster the three interconnected modes of understanding mathematics topics:
embodied, spatial, and numerical.

Building on this existing work, our project focused on the learning of slope and rate of
change. Learners often experience slope physically—for example, when walking up or down
a ramp as a measure of  steepness—while in functional  graphs slope represents rate of
change. These two meanings of slope may cause difficulties in understanding the concept of
slope.  Hoban  (2021)  emphasizes  that  deep  understanding  of  slope  requires  integrating
multiple external representations (MERs), graphical reasoning, concepts of ratio and rate,
and proportional reasoning (multiplicative thinking).

Most  existing  embodied  systems for  learning  mathematics  topics  are  standalone
systems.  We  hypothesize  that  students  experiencing  a  connected  trajectory  of  related
mathematical topics—in our case, proportion, slope, and rate of change—through a chain of
embodied  learning  systems,  could  lead  to  deeper  mathematical  understanding.  Such  a
design could enable students to integrate elements from their prior embodied experiences
with new mathematical contexts. The exploratory experiences offered by existing standalone
systems often vary across topics. By maintaining a consistent design and pedagogy thread
across related topics,  we expect  our  design to help  students integrate ideas across the
systems.  Our  central  research  question,  therefore,  is:  Does  engaging  with  a  chain  of
embodied learning systems support students in developing an integrated understanding of
related mathematical topics, and how does student discourse reflect such integration?

Drawing  on  this  perspective,  our  embodied  learning  design  begins  with  bodily
experience, to ground students’ initial understanding in qualitative experience (Tall, 2003),
rather  than  opaque  formalism.  The  design  also  incorporates  principles  of  enactivist
pedagogy (Abrahamson et  al.,  2022),  linking  embodied,  spatial,  and numerical  forms of
reasoning. While current embodied systems/ environments for proportion (Abrahamson &
Sánchez-García, 2016), slope (Abrahamson et al., 2021), and rate of change (Boaler et al.,
2016,Swanson, H., & Trninic, D. (2021)) exist as stand-alone environments, we hypothesize
that sequencing them into a coherent chain will enable students to transition across these
topics smoothly. We propose that such chaining, rooted in embodied experience, will support
learners in making sense of formal mathematics when it is later introduced, thus providing
‘cognitive roots’ (Tall, 2003).



3. Methods

In the pilot study reported here, participants were a group of Class 7 students from an ICSE
school in Maharashtra. The initial sample consisted of five students (n = 5) for the first two
days.  However,  due to a flu  outbreak at  the school,  participation  later  reduced to three
students (n = 3). We selected participants based on their interest in the study and parental
consent. The intervention spanned 5 days (with 4 days of intervention), with daily sessions of
about  one  hour  each.  Across  these  sessions,  students  participated  in  a  purposefully
designed  sequence  of  embodied  learning  activities,  intended  to  help  students  integrate
proportional reasoning with an emerging understanding of slope and rate of change. Prior to
the sessions, students were given a demonstration and instructions on how to carry out the
activity. Students were encouraged to think aloud, expressing their thoughts and strategies.
Peers  were  expected  to  examine  their  reasoning  for  correctness  and  offer  challenges.
Students'  reflections led to discussions and strategies related to concepts such as ratio,
slope, and rate.

3.1 System and study design

On Day 1, students engaged with our lab-based version of the Mathematics Imagery Trainer
(Abrahamson & Sánchez-García,  2016)  using motion sensors.  The screen turned green
when the correct 1:2 proportion was maintained. Students explored how to coordinate their
hand  movements,  identified  multiple  positions  where  the  condition  held,  and  practiced
sustaining proportional motion, laying a bodily foundation for proportional reasoning. On Day
2, students used the touchscreen version of the same system, moving two fingers along
vertical  columns in fixed proportions.  Unlike  Day 1,  they encountered varying ratios and
repeated the same activity across different proportional conditions. On Day 3, the activity
was  Graph  the  Walk.  Our  system recorded  30  seconds  of  walking  data  and  displayed
movement count–time graphs for discussion in both student and teacher systems. With the
support  of  a  60  BPM  metronome,  students  walked  at  different  speeds  (1–3  steps  per
second),  then matched  graphs  to  walkers,  justifying  their  reasoning  through  speed  and
graph shape. The next activity was Walk the Graph, where they were shown a custom target
graph to recreate through walking. They planned and executed their walks, compared the
resulting graph with the custom graph, and reflected on strategies and challenges in aligning
embodied action with expected graphical representations, supported by temporal cues. On
Day 4, Graphing Metronomes was introduced. Students adjusted beats per minute (BPM)
using  a  slider  while  the  system displayed  a  real-time cumulative  beat  graph.  After  free
exploration of how BPM affected the graph, they attempted to reproduce custom graphs and
discussed how their manipulations shaped the resulting representations.



Figure 3. Day wise intervention task

/
4. Discussions

On Day  1  and  Day  2,  students  worked  with  ratios  using  Mathematics  Imagery  Trainer,
comparing two quantities of  the same kind,  namely the distance from the bottom of  the
sensor.  Studies  have shown that  students  develop proportional  reasoning  through goal-
oriented body movements, which can then be transitioned to formal mathematical discourse
by introducing elements such as cursors,  grids,  and numbers (Abrahamson & Sánchez-
García, 2016). For instance, students might articulate that “for every one box on the left, two
boxes must  be taken on the right.”  The phrase  ‘for  every’ plays  a key role  in  fostering
multiplicative comparison between the two sides (Hoban, 2021). 

Building on this foundation of ratio, the Day 3 activity introduced students to a special
case of ratio,  namely  rate, where one type of quantity (movement count) is compared to
another (time in seconds). In the first activity of Day 3 activity, students were asked to walk
at varying speeds and then match the resulting graphs to the individuals who had generated
them, justifying their reasoning. The graph below (Figure 4) was produced by Inu, Avi, and
Karthik  (names  anonymized).  Selected  phrases  from  the  episode,  along  with  the
corresponding analysis, are presented in table 1 (link to transcript)

Figure 4. Graphs generated by Avi, Inu and karthik  through their movement s at
varying speed

https://drive.google.com/file/d/1pfjOzFEVgONCFmNIOZhnG9vIrBY-fuJw/view?usp=drive_link


Table 1. Table of analysis

Discourse Analysis
Karthik:  Because  Inu  walked  faster.  So,
that's  why  that  blue  line  is  more  like  up
(upward  slanting  gesture).  So,  he  has
taken more steps.

Here,  the  words  faster and  up are
connected by the student, meaning that the
faster the movement, the steeper the graph
will  be. The learners are thus able to link
the  bodily  experience  of  faster with  the
graphical representation of steeper

Avi: Inu took 40 steps in 30 seconds, i took
30 steps in  30 seconds and Karthik  took
28.. or 29 steps

The presence of the x- and y-axes in the
system  enabled  students  to  summarize
and compare each participant’s movement
counts, adding a quantitative dimension to
the discussion.

Avi: I remember in my graph, when I was
looking at the orange (colour of the graph
in  the student  system),  in  the  end,  there
was a little down. 
Instructor  1:  Why  do  you  think  that
happened?
Avi:  Because  in  the  end,  I  decreased
speed. 

Avi  interprets  the graph in  relation  to  his
own walk. This is evident when he refers to
the dip at the end (the dotted circle in the
pink  graph  in  figure  4)  as  the
representation of a reduction in speed.

Apart  from the slope of  the graph (in the presence of  the coordinate axes) as a
spatial understanding, this idea was also evident in the actual distances the students walked.
However,  they  did  not  explicitly  discuss  this.  The  researcher  could  have  initiated  this
conversation, but this was recognized only later during the analysis. For instance, Avi walked
twice along the corridor, Inu walked three times, while Karthik walked only once. Bringing
attention to this might have led to a different kind of discussion, which can be incorporated
into future studies. Based on this instance, we hypothesize that students’ conversations and
experiences need to be braided together by the instructor, to integrate the embodied, spatial
and numerical understanding, as illustrated in Figure 5.

Figure 5. Illustration of braided understanding across embodied, spatial and numerical
dimensions in the ‘walk the graph’ and ‘graph the walk’ activities.



In the second activity of Day 3, students moved from walking at assigned speeds to
free exploration. Finally in the last activity they were challenged to reproduce the shape of
the given graph (which we term as custom graph) through their walking. The graph below
(Figure  4)  presents  the  custom graph  presented  to  the  students  (pink)  and  the  graphs
produced by Inu, Avi, and Karthik (see appendix 2 for the entire transcript).

Figure 6. Student generated graphs based on their analysis of the custom graph  and
corresponding action plan.

As soon as the custom graph was presented, Karthik remarked “bhaag bhaag” (run
run), while Avi added, “we need to jog and then sprint.” Although Avi had not generated this
graph, he was immediately able to interpret it in terms of movement. He observed that the
first 10 seconds were less steep than the next 10 seconds, leading him to infer that while
both segments required continuous motion, the second part demanded a faster pace than
the first. By the end, the group identified that in the first 10 seconds they should take 1 step
per second, in the next 10 seconds 3 steps per second, and in the last 10 seconds 2 steps
per second. This was based on their observation that the graph represented 10 steps in 10
seconds, 30 steps in 10 seconds, and 20 steps in 10 seconds, respectively. In doing so, the
children  converted  these  observations  into  unit  ratios  to  plan  their  actions.  During  this
activity, students also engaged with phrases such as “1 step per second” and “3 steps per
second,” where the term  per served a role similar to “for every,” supporting multiplicative
reasoning  rather  than  additive  strategies.  Such  proportional  reasoning  is  critical  for
developing an understanding of slope, and thereby, the concept of rate.

https://drive.google.com/file/d/1pfjOzFEVgONCFmNIOZhnG9vIrBY-fuJw/view?usp=drive_link


5. Limitation and future work 

We summarize below the design limitations revealed by the study, and the planned revisions
to address these.

1. The  study  aimed  to  explore  interconnected  understanding  across  the  chain  of
systems. However, our current prompts and questions did not sufficiently elicit this
interconnectedness in students’ thinking. We have revised and refined the prompts
to better probe such links.

2. This study did not include pre- and post-intervention assessments. The analysis of
the  pilot  data  revealed  that  such  assessments  could  offer  valuable  insights,
particularly related to shifts in students’ thinking. We are currently developing such
assessments to include in future studies.

6. Conclusion

The  pilot  study  indicates  that  our  chained  system  of  embodied  interactions  creates
opportunities for students to integrate mathematical ideas, using a trajectory that begins with
ratio, progresses to graphs where they encounter the notion of slope, and ultimately leads to
conversations about rate of change and its relation to proportional reasoning. Ongoing work
examines  how  students  move  back  and  forth  between  embodied  experiences,  spatial
reasoning,  and  numerical  representations,  to  make  sense  of  problems  and  develop
solutions. We also aim to explore in future studies how learners transition across different
activities  within  this  chain  of  embodied  learning  experiences  as  they  construct  their
mathematical understanding. The pilot study indicates that the task and pedagogical aspects
of the interventions (the embodied lesson plan) would need to be refined and systematically
designed, to better probe and support such dynamic movements. While the system offers
valuable affordances for both teaching and learning, its effectiveness relies on thoughtful
pedagogical  facilitation.  We thus view the teacher’s  participation  as  central.  The design
serves as a tool  to support  – not  replace – the teacher in  helping students develop an
integrated mathematical understanding.
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