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Abstract:This paper presents the design of a sequenced chain of embodied learning
systems, to support students’ transition from basic concepts (such as proportion) to
more advanced ideas like slope and rate of change, and thus integrate the three
concepts. Drawing on Tall's (2003) notion of embodiment as a cognitive basis for
formal mathematics, and informed by enactivist pedagogy (Abrahamson et al., 2022),
the approach highlights how bodily actions can ground and enrich complex
reasoning. In this design, learners progress through a series of embodied
experiences that focus on 3 different kinds of understanding - spatial, numerical, and
graphical. By sequencing interconnected systems — rather than providing isolated
systems — we aim to examine how such chained embodied learning designs influence
students’ meaning-making across mathematical ideas.
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1. Introduction

Recent interactive designs open up novel ways to understand and learn mathematics, by
allowing students to directly interact with mathematical entities, across topics such as natural
numbers (De Freitas & Sinclair, 2014) algebra (Weitnauer et al,. 2016), proportion
(Abrahamson & Sanchez-Garcia, 2016), geometry (Nathan et al., 2022), and integers
(Elangaivendan et al., 2023). These learning systems also vary in the extent of bodily
involvement they invite—ranging from localized touch-screen actions with fingers, to
movements of the upper body, to full-body enactments. Such embodied designs allow
learners to perform physical actions that parallel mathematical operations. Examples include
combining objects to represent addition (De Freitas & Sinclair, 2014), imagining body parts
as mathematical entities (e.g. front part of hand till elbows as a line segment; Nathan et al.,
2022), and using the whole body as a resource (e.g., walking at varying speeds to
experience changing rates; Swanson & Trninic, 2021) ). Such enactments provide
opportunities for students to visualize, feel, and manipulate abstract concepts, making the
meanings of formal mathematics more transparent and accessible, compared to the opaque
use of algorithms promoted by dominant text-based modes.

Most embodied learning environments are based on stand-alone activities focusing
on a single concept, or various aspects of the single concept. Our work seeks to extend this
design approach, by exploring the nature of learning when different embodied systems are
connected in a sequence. Specifically, we investigate how learners could transition from a
foundational concept like proportion to more complex ideas such as slope and rate of



change, through a chain of embodied activities. To traverse this progression, students start
with embodied experiences that serve as initial experiences of the formal mathematical
understanding. These experiences are then formalised using symbolic structures such as
graphs, numbers and equations. Here we present the design of such a sequenced system
and illustrate its potential using a vignette from a pilot study.

2. Theoretical Background

Tall (2003) describes three worlds of mathematics—embodied, proceptual, and
formal/axiomatic. He argues that while the embodied mode cannot serve as a basis for
proof, it is essential as the foundation of human meaning-making. For instance, rather than
introducing the limit concept in calculus purely in formal terms to students, Tall (2003)
suggests developing meanings of math topics like limits, differentiability, and continuity by
allowing learners to interact with the mathematical topics in enactive way before moving to
formal mode. Recent embodied technologies enable engaging with mathematical concepts
in ways not possible through static, print-based resources. They help overcome cognitive
barriers in transitioning across topics (for example, from natural numbers to integers)
through interaction with tangible interfaces. In his approach, software tools supporting
enactive controls such as zooming and sliding allow students to perceive differentiability
through local straightness and continuity through local flatness. These embodied perceptions
of local straightness and local flathess serve as cognitive roots for later development of
formal ideas of continuity and differentiability respectively (as illustrated in Figures 1 and 2,
using Desmos). Such enactments—sliding and zooming along a graph—enable learners to
feel continuity and differentiability. This allows learners to develop a more meaningful
understanding of functions, such as cases where a function is continuous everywhere but
not differentiable everywhere (like modulus function in Figure 1).

Figure 1. The modulus function y = | x| appears locally straight everywhere when a square
box is slid along its graph (left). However, at the sharp corner, no amount of zooming reveals
local flatness. Thus, the function is locally straight everywhere but not locally flat at all points.
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Figure 2. The parabola function on the other hand is locally flat at every point on zooming
and sliding along the graph of the parabola function

Recent studies have sought to extend this embodied research perspective to
classrooms, through enactivist mathematics pedagogy (Abrahamson et al., 2022). Here,
learners begin by developing perceptual strategies in response to a problem, which —
through reflection, guidance from teacher and peer discussion — evolve into mathematical
concepts. For instance, in a study of learning proportions using an embodied interaction
system, students first engaged in embodied understanding, which was then gradually
transitioned into spatial and numerical reasoning, through the introduction of formal elements
such as cursors, grids, and axes. These helped reframe the initially qualitative discussions in
quantitative terms. This approach illustrates how embodied learning systems can be
designed to foster the three interconnected modes of understanding mathematics topics:
embodied, spatial, and numerical.

Building on this existing work, our project focused on the learning of slope and rate of
change. Learners often experience slope physically—for example, when walking up or down
a ramp as a measure of steepness—while in functional graphs slope represents rate of
change. These two meanings of slope may cause difficulties in understanding the concept of
slope. Hoban (2021) emphasizes that deep understanding of slope requires integrating
multiple external representations (MERS), graphical reasoning, concepts of ratio and rate,
and proportional reasoning (multiplicative thinking).

Most existing embodied systems for learning mathematics topics are standalone
systems. We hypothesize that students experiencing a connected trajectory of related
mathematical topics—in our case, proportion, slope, and rate of change—through a chain of
embodied learning systems, could lead to deeper mathematical understanding. Such a
design could enable students to integrate elements from their prior embodied experiences
with new mathematical contexts. The exploratory experiences offered by existing standalone
systems often vary across topics. By maintaining a consistent design and pedagogy thread
across related topics, we expect our design to help students integrate ideas across the
systems. Our central research question, therefore, is: Does engaging with a chain of
embodied learning systems support students in developing an integrated understanding of
related mathematical topics, and how does student discourse reflect such integration?

Drawing on this perspective, our embodied learning design begins with bodily
experience, to ground students’ initial understanding in qualitative experience (Tall, 2003),
rather than opaque formalism. The design also incorporates principles of enactivist
pedagogy (Abrahamson et al.,, 2022), linking embodied, spatial, and numerical forms of
reasoning. While current embodied systems/ environments for proportion (Abrahamson &
Sanchez-Garcia, 2016), slope (Abrahamson et al., 2021), and rate of change (Boaler et al.,
2016,Swanson, H., & Trninic, D. (2021)) exist as stand-alone environments, we hypothesize
that sequencing them into a coherent chain will enable students to transition across these
topics smoothly. We propose that such chaining, rooted in embodied experience, will support
learners in making sense of formal mathematics when it is later introduced, thus providing
‘cognitive roots’ (Tall, 2003).



3. Methods

In the pilot study reported here, participants were a group of Class 7 students from an ICSE
school in Maharashtra. The initial sample consisted of five students (n = 5) for the first two
days. However, due to a flu outbreak at the school, participation later reduced to three
students (n = 3). We selected participants based on their interest in the study and parental
consent. The intervention spanned 5 days (with 4 days of intervention), with daily sessions of
about one hour each. Across these sessions, students participated in a purposefully
designed sequence of embodied learning activities, intended to help students integrate
proportional reasoning with an emerging understanding of slope and rate of change. Prior to
the sessions, students were given a demonstration and instructions on how to carry out the
activity. Students were encouraged to think aloud, expressing their thoughts and strategies.
Peers were expected to examine their reasoning for correctness and offer challenges.
Students' reflections led to discussions and strategies related to concepts such as ratio,
slope, and rate.

3.1 System and study design

On Day 1, students engaged with our lab-based version of the Mathematics Imagery Trainer
(Abrahamson & Sanchez-Garcia, 2016) using motion sensors. The screen turned green
when the correct 1:2 proportion was maintained. Students explored how to coordinate their
hand movements, identified multiple positions where the condition held, and practiced
sustaining proportional motion, laying a bodily foundation for proportional reasoning. On Day
2, students used the touchscreen version of the same system, moving two fingers along
vertical columns in fixed proportions. Unlike Day 1, they encountered varying ratios and
repeated the same activity across different proportional conditions. On Day 3, the activity
was Graph the Walk. Our system recorded 30 seconds of walking data and displayed
movement count—time graphs for discussion in both student and teacher systems. With the
support of a 60 BPM metronome, students walked at different speeds (1-3 steps per
second), then matched graphs to walkers, justifying their reasoning through speed and
graph shape. The next activity was Walk the Graph, where they were shown a custom target
graph to recreate through walking. They planned and executed their walks, compared the
resulting graph with the custom graph, and reflected on strategies and challenges in aligning
embodied action with expected graphical representations, supported by temporal cues. On
Day 4, Graphing Metronomes was introduced. Students adjusted beats per minute (BPM)
using a slider while the system displayed a real-time cumulative beat graph. After free
exploration of how BPM affected the graph, they attempted to reproduce custom graphs and
discussed how their manipulations shaped the resulting representations.
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Figure 3. Day wise intervention task
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4. Discussions

On Day 1 and Day 2, students worked with ratios using Mathematics Imagery Trainer,
comparing two quantities of the same kind, namely the distance from the bottom of the
sensor. Studies have shown that students develop proportional reasoning through goal-
oriented body movements, which can then be transitioned to formal mathematical discourse
by introducing elements such as cursors, grids, and numbers (Abrahamson & Sanchez-
Garcia, 2016). For instance, students might articulate that “for every one box on the left, two
boxes must be taken on the right.” The phrase ‘for every’ plays a key role in fostering
multiplicative comparison between the two sides (Hoban, 2021).

Building on this foundation of ratio, the Day 3 activity introduced students to a special
case of ratio, namely rate, where one type of quantity (movement count) is compared to
another (time in seconds). In the first activity of Day 3 activity, students were asked to walk
at varying speeds and then match the resulting graphs to the individuals who had generated
them, justifying their reasoning. The graph below (Figure 4) was produced by Inu, Avi, and
Karthik (names anonymized). Selected phrases from the episode, along with the
corresponding analysis, are presented in table 1 (link to transcript)
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Figure 4. Graphs generated by Avi, Inu and karthik through their movement s at
varying speed
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Table 1. Table of analysis

Discourse

Analysis

Karthik: Because Inu walked faster. So,
that's why that blue line is more like up
(upward slanting gesture). So, he has
taken more steps.

Here, the words faster and up are
connected by the student, meaning that the
faster the movement, the steeper the graph
will be. The learners are thus able to link
the bodily experience of faster with the
graphical representation of steeper

Avi: Inu took 40 steps in 30 seconds, i took
30 steps in 30 seconds and Karthik took
28.. or 29 steps

The presence of the x- and y-axes in the
system enabled students to summarize
and compare each participant’'s movement
counts, adding a guantitative dimension to
the discussion.

Avi: | remember in my graph, when | was
looking at the orange (colour of the graph
in the student system), in the end, there
was a little down.

Instructor 1: Why do you think that

happened?
Avi:
speed.

Because in the end, | decreased

Avi interprets the graph in relation to his
own walk. This is evident when he refers to
the dip at the end (the dotted circle in the
pink graph in figure 4) as the
representation of a reduction in speed.

Apart from the slope of the graph (in the presence of the coordinate axes) as a
spatial understanding, this idea was also evident in the actual distances the students walked.
However, they did not explicitly discuss this. The researcher could have initiated this
conversation, but this was recognized only later during the analysis. For instance, Avi walked
twice along the corridor, Inu walked three times, while Karthik walked only once. Bringing
attention to this might have led to a different kind of discussion, which can be incorporated
into future studies. Based on this instance, we hypothesize that students’ conversations and
experiences need to be braided together by the instructor, to integrate the embodied, spatial
and numerical understanding, as illustrated in Figure 5.
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Figure 5. lllustration of braided understanding across embodied, spatial and numerical
dimensions in the ‘walk the graph’ and ‘graph the walk’ activities.



In the second activity of Day 3, students moved from walking at assigned speeds to
free exploration. Finally in the last activity they were challenged to reproduce the shape of
the given graph (which we term as custom graph) through their walking. The graph below
(Figure 4) presents the custom graph presented to the students (pink) and the graphs
produced by Inu, Avi, and Karthik (see appendix 2 for the entire transcript).
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Figure 6. Student generated graphs based on their analysis of the custom graph and
corresponding action plan.

As soon as the custom graph was presented, Karthik remarked “bhaag bhaag” (run
run), while Avi added, “we need to jog and then sprint.” Although Avi had not generated this
graph, he was immediately able to interpret it in terms of movement. He observed that the
first 10 seconds were less steep than the next 10 seconds, leading him to infer that while
both segments required continuous motion, the second part demanded a faster pace than
the first. By the end, the group identified that in the first 10 seconds they should take 1 step
per second, in the next 10 seconds 3 steps per second, and in the last 10 seconds 2 steps
per second. This was based on their observation that the graph represented 10 steps in 10
seconds, 30 steps in 10 seconds, and 20 steps in 10 seconds, respectively. In doing so, the
children converted these observations into unit ratios to plan their actions. During this
activity, students also engaged with phrases such as “1 step per second” and “3 steps per
second,” where the term per served a role similar to “for every,” supporting multiplicative
reasoning rather than additive strategies. Such proportional reasoning is critical for
developing an understanding of slope, and thereby, the concept of rate.
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5. Limitation and future work

We summarize below the design limitations revealed by the study, and the planned revisions
to address these.

1. The study aimed to explore interconnected understanding across the chain of
systems. However, our current prompts and questions did not sufficiently elicit this
interconnectedness in students’ thinking. We have revised and refined the prompts
to better probe such links.

2. This study did not include pre- and post-intervention assessments. The analysis of
the pilot data revealed that such assessments could offer valuable insights,
particularly related to shifts in students’ thinking. We are currently developing such
assessments to include in future studies.

6. Conclusion

The pilot study indicates that our chained system of embodied interactions creates
opportunities for students to integrate mathematical ideas, using a trajectory that begins with
ratio, progresses to graphs where they encounter the notion of slope, and ultimately leads to
conversations about rate of change and its relation to proportional reasoning. Ongoing work
examines how students move back and forth between embodied experiences, spatial
reasoning, and numerical representations, to make sense of problems and develop
solutions. We also aim to explore in future studies how learners transition across different
activities within this chain of embodied learning experiences as they construct their
mathematical understanding. The pilot study indicates that the task and pedagogical aspects
of the interventions (the embodied lesson plan) would need to be refined and systematically
designed, to better probe and support such dynamic movements. While the system offers
valuable affordances for both teaching and learning, its effectiveness relies on thoughtful
pedagogical facilitation. We thus view the teacher’s participation as central. The design
serves as a tool to support — not replace — the teacher in helping students develop an
integrated mathematical understanding.
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