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Abstract: It is crucial to consider parameters such as force and motion when solving 
physical problems. However, novices often struggle (a) what parameters define a given 
state and (b) what kind of state transition occurs when a certain operator is applied. 
Therefore, we created a learning environment for learners to engage in exploration 
based on the relationship between inputs and outputs. Thus, this study uses error-
based simulation to help students learn this exploration through the relationship 
between parameter inputs and outputs, which is a type of computer-based simulation 
environment.  
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1. Introduction 
 

Learning is an activity that occurs in a domain that a student has not yet mastered. Concerning 
learning, problem-solving occurs in an unmastered domain; therefore, arriving at the correct 
answer in the first attempt is difficult. In such cases, using operators exploratively to transition 
from the initial state presented in the problem to the required final state is necessary, seeking 
a solution through trial and error. To conduct such search activities, understanding (a) what 
parameters define a given state and (b) what kind of state transition occurs when a certain 
operator is applied is essential. 

For example, in a diagram drawing problem in mechanics, the correct answer for an 
object at rest on the ground is to draw the downward force of gravity from the center and an 
equal upward normal force pushing back from the ground. The object remains stationary in 
the vertical direction when the upward and downward forces are equal. To provide a 
comprehensive explanation of this series of causal relationships, the net force in the vertical 
direction becomes zero when the upward and downward forces are balanced. If the net force 
in the vertical direction is zero, and there is no initial velocity, the velocity of the object is zero. 
Therefore, the object does not move and remains at rest. Learners must construct an 
appropriate search space for themselves to construct this type of causal understanding, i.e., 
they must understand which parameters should be considered in a state and how a given 
operator affects those parameters. 

In this study, we extend the framework of the Interactive Learning Environment (ILE). In 
a conventional ILE, a learner interacts with the learning environment. In other words, the 
learner observes the feedback that the learning environment outputs in response to their own 
input parameters and exploratively forms a model of the relationship between input and output. 
However, as Mizoguchi (2024) also points out, it is not easy for learners to construct an 
appropriate search space. When a learner is unable to form a search space, they may reach 
an impasse in forming a model of the relationship between input and output. For example, in 



ILEs such as ThinkerTools and EBS (White, 1993; Hirashima, 1998), when force is the input 
parameter and behavior is the output, learners can only directly observe the relationship 
between force and behavior. In this situation, if they do not sufficiently understand the 
concepts of acceleration and velocity, which are necessary for model formation, the model 
cannot be formed appropriately. Therefore, this study extends the ILE framework to require a 
task where learners observe the chain of causal relationships that exists between the 
parameters they input and those the learning environment outputs. In this paper, we develop 
and evaluate a learning support environment that applies this method to diagram-drawing 
problems in the field of mechanics. 
 

 

2. Related Work 
 

2.1 Error-Based Simulation 
 

It is important that students learn proactively and constructively; particularly, errors serve as 
crucial opportunities to reflect on their states of understanding. By visualizing learners’ errors, 
error-based simulation (EBS) provides them with an opportunity to reflect on their 
comprehension. This error visualization fosters awareness by presenting learners with the 
consequences that arise from their specific mistakes. "Awareness of an error" is not about a 
learner acknowledging a mistake after being shown the correct answer by others; rather, it is 
about the learner noticing for themselves that the result of their answer is strange. In other 
words, learners understand why and how their responses are incorrect. EBS has been 
proposed as a method to achieve this error visualization (Hirashima et al., 1998). EBS is a 
type of ILE aimed at assisting learners understand the relationship between input and output. 

An example of EBS is illustrated in Figure 1. Figure 1 depicts a learner answering the 
problem, "Draw the forces acting on an object at rest on a table." The normal force from the 
floor—the phenomenon of the object remaining stationary—and gravity acting from the center 
of the object are visualized when the learner provides the correct answer (Figure 1, top-right). 
However, if the learner makes a mistake, such as drawing only the force of gravity, the 
phenomenon of the object sinking through the desk can be visualized (Figure 1, bottom right). 
The learner can recognize that their prior knowledge, such as the idea that "an inanimate 
object like a desk does not push back," is incorrect when shown a phenomenon that is vastly 
different from the stationary state the learner expected. Furthermore, EBS is expected to assist 
learners in constructing a mental model for converting force into position. This mental model 
enables one to mentally simulate how a target (parameter) changes due to an applied 
operation (operator) during a search activity. In the error-exploration activities of physics 
learning, a well-constructed mental model is crucial. This is because if a mental model is built 
within the learner, they can use the equation F = ma to test and discover for themselves the 
cause-and-effect (input–output) relationship, such as "What happens to acceleration if I 
increase the force?" 

However, conventional EBS has a limited ability to foster an understanding of causal 
series. For example, typical mechanics EBS systems (Imai et al., 2008; Aikawa et al., 2024a) 
aid in understanding the relationship between force and motion; however, they do not discuss 
how a difference in force affects the difference in acceleration, how a difference in acceleration 
affects the difference in velocity, or how this ultimately leads to a difference in behavior. 
Although some studies have dealt with the relationship between force and acceleration, 
Yamada et al. (2016) research examined the relationship between force and acceleration and 
force and velocity; however, it did not address how a difference in force leads to a difference 
in acceleration or velocity. Aikawa et al. (2024b) developed an EBS to understand the 
relationship between force and acceleration and between acceleration and velocity; however, 
this research does not provide a mechanism for learning the causal series of force, 
acceleration, and velocity. 
 



2.2 Error Visualization Model 
 

The error visualization model is illustrated in Figure 1. In the error visualization model, three 
essential parameters were identified for effective error visualization. The first is visibility, which 
represents the degree of difference between the learner’s behavior and the correct behavior. 
The second is reliability, which represents the validity of an EBS based on a learner’s answer. 
The third is suggestiveness, which represents the difference between the correct behavior and 
the EBS appropriately implies the difference between the correct answer and the learner’s 
answer. 

Within visibility, there are specific conditions for creating awareness of an error, known 
as the criteria for error visualization (CEV). CEV are two conditions that enable EBS to provide 
learners with this awareness (Hirashima & Horiguchi 2016; Ueno et al. 2019). Crucial to 
providing this awareness is the existence of a qualitative difference between the behavior 
generated by the EBS and the correct behavior. This qualitative difference indicates a 
distinction between properties. In the context of CEV, a qualitative difference refers to a 
difference in the qualitative values (+, 0, −) between the behavior based on the learner’s 
answer and the correct behavior. There are two such criteria, CEV-1 and CEV-2. 
⚫ CEV-1: A condition in which there is a qualitative difference in the velocity of the behavior 

generated from the learner’s incorrect and correct answers. 
⚫ CEV-2: A condition in which there is a qualitative difference in the first derivative of velocity 

(i.e., acceleration) between the behavior generated from the incorrect answer and that of 
the correct answer. 
A learner can become aware of their error if at least one of these CEV is met. Previously, 

Hirashima and Horiguchi (2016) proposed a method for enhancing visibility by altering the 
parameters of physical phenomena. Specifically, they adjusted parameters, such as the size 
of the object or the angle of inclination, to satisfy the CEV. 

However, even when the CEV is satisfied, large parameter fluctuations can make the 
simulation feel artificial to the learner. Therefore, to account for reliability, Hirashima and 
Horiguchi (2016) worked to satisfy only one CEV without making significant parameter 
changes. This successfully prevented the simulator from feeling contrived. 

Furthermore, to enhance suggestiveness, Hirashima and Horiguchi (2016) have 
presented EBS that can correctly point out the cause of an error, which is identified by 
comparing the learner’s answer with the correct one and referencing predefined rules about 
error causes. 

These attempts focused on refining visualization to enable learners to engage in error 
exploration activities. However, Hirashima and Horiguchi (2016) have also pointed out that 
there is a trade-off between visibility and reliability. 
 

2.3 Research Gaps and Objectives 
 
By demonstrating the difference between a strange and correct simulation, EBS prompts 
learners to become aware of their errors. However, EBS does not provide a mechanism for 
learners to become aware of all the parameters that should be fully considered. Therefore, 
this research introduces an "observation activity" to facilitate error exploration, where learners 
explore all relevant parameters. In the error exploration activity, learners observed the 
difference between correct behavior and behavior based on their answers. Subsequently, we 
have them conduct observations that map their input to the behavior to understand how their 
answers lead to the generation of strange behaviors. In this activity, the learner considers why 
and how it is wrong compared to the correct simulation by observing the differences and 
mapping the correspondence between their answer and behavior. By having learners ponder 
the meaning of a strange simulation and its differences, they are expected to explore and 
correct their errors proactively. Subsequently, to observe the differences and map their 
answers to the behavior, learners searched within a search space composed of the 
parameters presented by the simulation (e.g., position and velocity). 

Even in conventional EBS, it is thought that learners who can engage in appropriate trial 
and error implicitly perform the type of exploration activity described above. However, it is 



assumed that some learners engage in random exploration without considering the meaning 
of the generated simulation and its differences, and make haphazard corrections to match the 
correct motion. Therefore, this study designed and developed a learning support environment 
that explicitly presents an error exploration activity based on the learner’s answer as a task. 

In this study, we aimed to facilitate and understand learners’ exploratory activities. In this 
study, we addressed the following research questions: 
⚫ RQ1: Can learners understand the forces acting on an object through error exploration? 
⚫ RQ2: Is the understanding of the difference between correct behavior and behavior based 

on one’s answers promoted by supporting the learner’s error exploration? 
⚫ RQ3: Is mapping the answer to the behavior promoted by supporting the learner’s error 

exploration? 
In this study, we developed a system that facilitates the observation of differences and 

correspondences between answers and behavior when a learner provides an incorrect answer 
to a problem. An evaluation experiment was conducted to answer these questions. 
 

 
Figure 1. Error visualization model. (Based on the model proposed by Hirashima et al., 

1998) 
 
 

3. Proposed Method 
 
The error exploration activity consists of two main processes: first, observing the "correct 
simulation" and the "simulation based on the learner’s answer" (observation of differences, 
Figure 2(1)), and second, linking the "learner’s answer" to the "simulation based on the 
learner’s answer" (correspondence between the answer and the behavior, Figure 2(2)). The 
learner engages in the error exploration activity through a cycle of observing differences and 
then mapping the correspondence between their answers and behavior. Specifically, we frame 
the observation and correspondence processes as a task by having the learners break down 
and consider the parameters of their answers stepwise. By having the learner observe 
differences and map the correspondence between their answers and behavior in this way, it 
is expected that they will understand the strangeness of their simulation, connect their answers 
to it, and comprehend their errors. The error-exploration activity focused on enabling learners 
to discover parameters within the search space heuristically during problem-solving. 

To observe differences in error exploration activity, we used the measurement tool from 
Ueno et al. (2019). A measurement tool is a framework that adds visual information by 
visualizing measurements of values such as Force, Acceleration, and Velocity using 
metaphors such as meters or gauges, thereby highlighting qualitative changes (in line with 
CEV-1). We framed the observation of differences as a task by having the learner use this 
measurement tool in the simulation. 

Figure 2 illustrates the learning activity for learners who cannot perform the error-
exploration activity independently. First, the learners were instructed to observe the presented 
simulations for differences. After this initial observation, they considered where the differences 
might exist. Finally, they conducted a focused observation to confirm whether a difference 
existed. By guiding the learner through this phased process of observing and then considering 
the differences, we facilitated the correspondence between their answers and behavior. 

What is crucial in mapping the correspondence between the answer and behavior is 
enabling learners to sequentially examine the parameters from the simulation back to the 
solution. This is because the simulation visualized the motion as illustrated in Figure 3. 

              

                

                     

                  

                    

                    

 

 

         
           

              
       

       
                            
            
                          
           

                 

                        

           



Specifically, the simulation is the result of a causal chain: the applied force determines the 
acceleration, which in turn determines the velocity, which, in turn, determines the change in 
position over time. Because there are many parameters between the learner’s answer (force) 
and the simulation’s behavior (change in position), it is vital to understand them step-by-step 
to map the answer to the behavior properly. 

To help learners examine these parameters step-by-step, it is necessary to provide an 
explorable environment and navigate through them as needed. However, because of the wide 
variety of possible incorrect answers and problems, the specific parameters to be examined 
can vary significantly. Therefore, preparing a predefined sequence for each pattern is difficult. 
To solve this problem, we use a Constraint Structure (Hirashima et al., 1995), as illustrated in 
Figure 4. A constraint structure represents the background of a problem as a network of 
quantitative relationships. The order in which the parameters were examined was determined 
based on the structure. Specifically, it includes equations for Position, Velocity, and 
Acceleration, as well as equations for calculating the total combined force and partial 
combined force from the individual force components drawn by the learner. 

Figure 4 depicts a concrete example of the step-by-step examination of these 
parameters. The problem involves drawing the forces acting on an object in uniform motion 
on a frictionless plane. The qualitative values (+, 0, −) of each parameter are determined by 
the learner’s answer and the correct answer. Once the values are determined, a difference 
appears between the learner’s parameters and the correct parameters. Specifically, there 
were changes in rightward Force, Acceleration, Velocity, and Position. Thus, a step-by-step 
order was determined to examine the parameters backward, from the change in position to 
the resulting velocity, to its cause in acceleration, and to the root error in the applied force. 
 

 
Figure 2. Difference observation and correspondence mapping. (Based on the model 

proposed by Hirashima et al., 1998) 
 
 

 
Figure 3. Various parameters in the movement. 

 
 

 
Figure 4. Sequence of parameter exploration guided by the learner’s answer. 

                

              

                

                     

                  

                    

                    
 

 
 
  
 

 
 
 
 
  
  
   

 

 
 
  
 
   

 
 
 
    

 

 

                    

                      

                   

                       

                

     

   
  
 

          

                            
                      

                   

                    

                    

                
       

                      

 

     

     

   

     

     

     

     

    

    

    
   
   

                                 
             

   

     

     
     

     

                    
             

                    

          
 

 

                        

    
    

 

                                
                                  

                               
                                

 

          
      

        
      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

       

       

               

         

         

         

         

         

         

         

                  

                  

 

 

 
 

 



4. Proposed System 
 
This section describes the workflow of our proposed system. Figure 5(a) depicts a diagram of 
the problem. When given the problem, "Draw the forces acting on two objects stacked 
vertically," the learner draws a Force diagram for the upper and lower objects based on the 
problem statement. In this example, the learner’s answer is incorrect, showing only gravity 
and the normal force for both objects. Figure 5(b) depicts the simulation confirmation screen. 
On this screen, the learner confirms the correct simulation generated based on their answer. 
In the example illustrated in Figure 5(b), the objects are stationary in both simulations. The 
process up to this point in Figures 5(a) and (b) is the same as the tasks a learner performs in 
a conventional EBS. 

Figures 5(c) and (d) are the screens where the learner engages in error exploration. In 
the incorrect answer in Figure 5(a), the force of the top object pushing on the bottom is missing, 
and the corresponding normal force from the bottom object is insufficient. To address these 
errors, the learner is prompted to use a measurement tool capable of measuring parameters 
such as Velocity, Acceleration, Total combined force, and partial combined force, to identify 
the source of the error. In Figure 5(c), the learners are asked if they think there is a difference 
between the correct simulation and their own. The question was, "Do you think there is a 
difference in the Partial combined force on the blue object in the vertical direction? " Answering 
this question transitioned the user to the screen, as illustrated in Figure 5(d). As illustrated in 
Figure 5(d), the learner was asked to select the measurement tool to investigate the 
differences they hypothesized. The learner, suspecting a difference in the "Partial combined 
force on each object," chooses to measure it using the "Partial Combined Force Meter." By 
selecting "Place," the measurement tool is placed on the simulation. 

When a learner’s answer contains multiple errors to explore, they may not be able to 
remember all the errors they have found, making it difficult to apply their findings when 
correcting the answer as part of the problem-solving process. Therefore, we implemented an 
Error Exploration Notebook (Figure 6) that summarized the areas explored by the learner. The 
notebook displayed an image of the force diagram, an image of the simulation generated from 
the learner’s answer, and a record of whether a difference was found during error exploration. 
This allows learners to review the differences in their answers, reflect on their findings, and 
think about where to explore next. Furthermore, by referencing notebooks when correcting 
answers, modifications can be made based on exploration activities. 
 

 
Figure 5. System screens. 

 
 

 
Figure 6. Error exploration notebook. 
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5. Evaluation 
 
In this study, we established the following three hypotheses corresponding to RQ1–RQ3: 
⚫ H1: Learners can accurately draw diagrams of forces acting on an object. 
⚫ H2: After observing differences in motion, learners will be able to identify the differences 

in each element. 
⚫ H3: After observing the differences in motion, learners become aware of the causal 

relationships between position, velocity, acceleration, and force. 
To evaluate the learning effectiveness of the proposed system and verify H1–H3, we 

conducted a preliminary evaluation experiment. The participants were 13 university students 
from the Faculty of Information Science who had previously studied mechanics. They were 
randomly assigned to an experimental group (n = 7) and a control group (n = 6). The 
experimental group used the developed system, whereas the control group used conventional 
EBS. The experiment consisted of a pre-test, a session using the system, and a post-test. The 
tests addressed problems related to mechanics. 

Participants were given drawing and presumptive thinking tests. The Drawing Test 
measured the learning effect on mechanics diagram drawing problems and was conducted to 
verify H1(Aikawa 2024a). The Presumptive Thinking Test was conducted to measure a 
learner's ability for causal inference. This test is based on the principle that genuine causal 
inference requires more than simply noticing covariation between two events; it requires an 
understanding of the underlying causal mechanism that explains the "why" and "how" of the 
relationship (Klahr et al., 2019). Accordingly, the test evaluates a learner's ability to compare 
different conditions to identify what variable has changed and to explain the mechanism by 
which that change affects the outcome. This test was conducted to verify H2 and H3. 

The Drawing Test consisted of five problems that required drawing the forces acting on 
an object, with a maximum score of five points (one point per question). This confirms that 
learners can draw forces accurately. The Presumptive Thinking Test consists of three 
problem-solving tasks, where, as illustrated in Figure 7, learners demonstrate a certain 
phenomenon and are asked to describe the differences and the reasons for those differences 
based on cause and effect. This confirms whether learners can observe the differences and 
map the correspondence between an answer and its behavior. 
 

 
Figure 7. The presumptive thinking test. 

 
 

5.1 Drawing Test 
 
To verify H1, Table 1 shows  the pre- and post-test results of the Drawing Test. When Cohen’s 
d was calculated for the effect size, the experimental group had a medium effect size, whereas 
the control group had almost no effect. Furthermore, Analysis of Variance (ANOVA) showed 
no interaction effect, no significant difference between the groups, and no significant difference 
(p < .05) between the pre- and post-tests. 

This can be attributed to the ceiling effect in the drawing tests. Looking at Table 1, the 
average pre-test scores for both groups were 3.8 or higher out of a maximum of 5 points, 
suggesting that the participants already had a high level of proficiency before the intervention. 
The learning effectiveness of conventional EBS has been recognized in previous studies. 
However, because the average pre-test score was 3.8 or higher, the measurement was 
conducted with very little room for improvement, which is presumed to be why a statistically 
significant difference was unlikely to appear. Thus, H1 is not supported. 



These findings address RQ1, which sought to determine if learners can understand the 
forces acting on an object through error exploration. As the analysis demonstrated, the non-
significant results of the Drawing Test (meaning H1 was not supported) were attributed to a 
ceiling effect. Therefore, due to this methodological limitation, the current experiment could 
not provide a conclusive answer to RQ1. 
 

Table 1. Pre/Post results and effect size for the drawing test 

 Pre-test Post-test 
Effect size 

Medium (SD) Medium (SD) 

Experimental Group 3.86 (0.99) 4.43 (1.05) 0.56 (medium) 

Control Group 3.83 (1.21) 4.00 (0.82) 0.16 (very small)  
 
 

5.2 Presumptive Thinking Test 
 
To verify H2, Table 2 shows the results for the mention rate of differences between the pre- 
and post-tests of the Presumptive Thinking Test. One point was awarded for mentioning each 
of the following: position, velocity, acceleration, total net force, partial net force, and force, thus 
evaluating whether or not learners could identify the appropriate parameters. The maximum 
possible score was six points. 

In the experimental group, the effect size was large for the position and acceleration, 
medium for the velocity and total net force, small for the force, and no effect for the partial net 
force. For the control group, the effect size was medium for force, whereas there was almost 
no effect on velocity and acceleration, and no effect on position, total net force, or partial net 
force. An Analysis of Variance (ANOVA) for each parameter showed a significant trend for the 
interaction effect of the acceleration parameter. Furthermore, a test of simple main effects 
revealed a significant trend between the pre- and post-tests for the experimental group and 
between the experimental and control groups at the post-test stage. Additionally, for the force 
parameter, there was a significant difference (p < .05) between the pre- and post-tests.  

We will now discuss the reasons for the difference in effect sizes for the position and 
acceleration parameters and the reason for the significant difference in the force parameter 
between the experimental and control groups. Unlike the conventional EBS system of the 
control group, the error exploration system of the experimental group allowed learners to 
explore differences in motion parameters. Therefore, the effect size of the parameter 
mentioned rate increased more in the experimental group than it did in the control group. 

RQ2 asked whether supporting learners' error exploration promotes their understanding 
of the difference in behavior between the correct simulation and the one based on their answer. 
The results of the Presumptive Thinking Test address this question, showing that the 
experimental group had a significantly higher rate of identifying differences in parameters like 
position and acceleration compared to the control group. This finding supports H2. Therefore, 
it is suggested that the proposed system effectively promoted learners' understanding of the 
differences in motion, thus providing an affirmative answer to RQ2. 

To verify H3, Table 3 shows the results for the mention rate of causal relationships in the 
pre-test and post-test of the Presumptive Thinking Test. One point was awarded if the learner 
mentioned a cause-and-effect relationship for a difference in the behavior of the presented 
phenomenon. The maximum possible score was six points. 

For the experimental group, the effect size was medium for the relationships of velocity
→position, acceleration→position, and force→position. In the control group, the effect size 

was small for acceleration and force velocities. 
We discuss the reason for the difference in the mention rate of causal relationships 

between the experimental and control groups. Unlike the conventional EBS system of the 
control group, the error exploration system of the experimental group prompted learners to 
consider the relationship between force and motion stepwise, starting from their answers. 
Therefore, it was hypothesized that learners would be able to construct mental models of the 
phenomenon. 



RQ3 asked whether supporting learners' error exploration promotes the mapping 
between their answer and the resulting behavior. The findings revealed that the experimental 
group showed a greater tendency than the control group to mention the causal relationships 
between position, velocity, acceleration, and force, a result that supports H3. This suggests 
that by being supported in their error exploration, learners were better able to understand how 
their answer (the force they input) leads to the resulting behavior (the motion) through a causal 
chain. Therefore, this process promoted the mapping between their answer and the behavior, 
addressing RQ3 affirmatively. 

 
Table 2. Results of statements for the difference between pre-/post-movements in the 
presumptive thinking test 

Movement difference Pre-test Post-test Effect size 

Experimental Group 

Position 0.00 (0.00) 0.44 (0.50) 1.27 (large) 

Velocity 0.11 (0.31) 0.33 (0.47) 0.56 (medium) 

Acceleration 0.11 (0.31) 0.44 (0.50) 0.80 (large) 

Total combined force 0.00 (0.00) 0.11 (0.31) 0.50 (medium) 

Partial combined force 0.00 (0.00) 0.00 (0.00) - 

Force 0.33 (0.47) 0.22 (0.42) 0.25 (small) 

Control Group 

Position 0.00 (0.00) 0.00 (0.00) - 

Velocity 0.33 (0.47) 0.40 (0.49) 0.14 (very small) 

Acceleration 0.20 (0.40) 0.13 (0.34) 0.18 (very small) 

Total combined force 0.00 (0.00) 0.00 (0.00) - 

Partial combined force 0.00 (0.00) 0.00 (0.00) - 

Force 0.27 (0.44) 0.07 (0.56) 0.56 (medium) 

 
 

Table 3. Results of statements for the causal relationship between pre-/post-movements in 
the presumptive thinking test 

Causal relationship Pre-test Post-test Effect size 

Experimental Group 

Velocity → Position 0.00 (0.00) 0.19 (0.39) 0.69 (medium) 

Acceleration → Position 0.00 (0.00) 0.14 (0.35) 0.58 (medium) 

Acceleration → Velocity 0.00 (0.00) 0.10 (0.29) 0.46 (small) 

Force → Position 0.00 (0.00) 0.19 (0.39) 0.69 (medium) 

Force → Velocity 0.57 (0.49) 0.57 (0.49) 0.00 (very small) 

Force → Acceleration 0.10 (0.29) 0.24 (0.43) 0.39 (small) 

Control Group 

Velocity → Position 0.00 (0.00) 0.00 (0.00) - 

Acceleration → Position 0.00 (0.00) 0.00 (0.00) - 

Acceleration → Velocity 0.17 (0.37) 0.11 (0.31) 0.24 (small) 

Force → Position 0.06 (0.23) 0.06 (0.23) 0.00 (very small) 

Force → Velocity 0.39 (0.49) 0.56 (0.50) 0.32 (small) 

Force → Acceleration 0.11 (0.31) 0.11 (0.31) 0.00 (very small) 

 
 

6. Conclusion 
 
Because problem-solving in learning occurs in an unmastered domain, arriving at the correct 
answer on the first attempt is difficult. In such cases, it is important to understand (a) the 



definition of the parameters defining a given state and (b) the state transitions caused by 
applying an operator to move from the problem’s initial state to the final state. Therefore, this 
study extends the ILE framework to help learners constructively learn this search space. 
Specifically, we propose a method that, when learners err, helps them understand which 
parameters their input affected and the resulting behavior. This method requires learners to 
engage in error exploration. Through trial and error, they must observe the chain of influence 
between parameters that explains the causal relationship between their answer and the 
resulting behavior. We developed and evaluated a learning support system applying this 
method to mechanics diagram drawing problems. 

The experimental results indicate that learners using the developed system focused on 
parameters related to the differences between motion and force. Furthermore, their 
statements linking a phenomenon's behavior to forces suggest that they mapped the 
phenomenon to the behavior. 

For future work, we will consider representing the search space as a map, using the 
learner’s error exploration activities as a starting point, to allow learners to experience the 
scientific hypothesis-testing cycle. Visualizing the search space as a map is expected to help 
learners plan their exploration strategies. 
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