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Abstract: The importance of trial-and-error modifications during concept mapping has 
been widely acknowledged, especially as an opportunity for learners to engage in 
metacognitive and higher-order thinking. However, it has been difficult to systematically 
analyze such modification activities due to the freedom learners have in creating and 
labeling nodes and links. This study investigates modification processes using the 
framework of the reconstruction-based concept map, in which a teacher-constructed 
map is deconstructed into its component nodes and links first, and then learners 
reconstruct the map using only these provided components. This setting enables the 
diagnosis of misconceptions—based on deviations from the teacher-constructed 
map—and consistent, comparable analysis of the mapping process across learners. 
From the learner’s perspective, prior studies have shown its effectiveness in promoting 
meaningful learning and higher-order thinking. We analyzed three datasets collected 
from university students enrolled in an object-oriented programming course. Each 
dataset corresponds to a different topic, with learners individually reconstructing maps 
using a Web-based application. The analysis focused on two process indicators: the 
number of false propositions (propositions not matching the teacher-constructed map) 
and the number of proposition changes, defined as modifying an existing proposition 
by reconnecting its link to a node. Regression analyses showed that while proposition 
changes alone had little correlation with map scores (an indicator of map quality), 
combining proposition changes with false propositions yielded a strong and significant 
correlation. Further comparison between the high-scoring group and the low-scoring 
group revealed no significant differences in the frequency or precision of proposition 
changes. However, high-scoring learners showed significantly higher rates of 
successful corrections (changes from a false proposition to a correct proposition) and 
a better recall rate of false propositions. These findings suggest that a form of cognitive 
compensation may play a key role in concept mapping performance—namely, the 
ability to correct earlier errors despite incomplete understanding. For example, high-
scoring learners still created false propositions, but were more effective at correcting 
them. The study emphasizes the importance of supporting proposition modification 
activities, particularly for low-scoring learners, and provides insights into the design of 
scaffolding mechanisms in digital concept mapping environments. 
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1. Introduction 
 
In studies on human learning, it has been emphasized that analyzing not only the final products 
but also the processes that generate them is essential (Ford et al., 1998; Lee & Fortune, 2013). 
Concept mapping is one such learning activity whose effectiveness has been widely 
recognized, and numerous studies have evaluated concept maps as products (Novak & 
Gowin, 1984; McClure & Bell, 1990; McClure et al., 1999). A concept map is a diagrammatic 



representation that depicts the semantic structure by linking propositions, each consisting of 
two concepts (nodes) connected by a labeled link. Propositions share nodes, and thereby form 
an integrated semantic structure. The importance of the concept mapping process itself has 
also been emphasized. For instance, Jablokow et al. (2015) noted that it can reveal detailed 
aspects of learners' understanding. Cañas et al. (2017) further argued that reviewing and 
modifying a map during its construction is a key activity that fosters metacognition and higher-
order thinking. 

However, process analyses to date have been limited to examining aspects such as 
the order in which nodes and links are placed (Srivastava et al., 2021) and the number of 
modification activities (Ching & Hsu, 2011). There have also been attempts to diagnose 
concept maps using natural language processing techniques automatically, yet none of these 
methods can explicitly determine the validity of individual propositions (Bhatia et al., 2021; 
Bleckmann & Friege, 2023). Consequently, no prior studies—whether qualitative or 
quantitative—have empirically analyzed the content of individual modifications to the 
propositions created. This limitation stems from the fact that, in standard concept mapping, 
learners are free to add or remove nodes and links, and the terminology and phrasing they 
use can vary from one learner to another. In such an environment, even if each learner's 
modification history could be tracked, it would be challenging to consistently compare the 
results across learners. 

From a theoretical perspective, the process of modifying a concept map can be seen 
as an attempt to align a learner’s internal representation—mental models or conceptual 
structures—with an external representation provided in the learning environment. External 
representations convey both elemental meaning (meaning inherent in individual components) 
and structural meaning (meaning arising from their organization). The additional meaning 
generated through the integration of these components, termed constructed meaning, 
emerges only when learners actively reorganize the structure (Hirashima & Watanabe, 2025). 
Proposition modifications in concept mapping, therefore, can be interpreted as opportunities 
for refining constructed meaning through the manipulation of external representations, 
potentially triggering metacognitive reflection and conceptual change. These theoretical 
insights highlight the significance of proposition modifications, yet their empirical analysis 
remains constrained by the limitations described above. 

The Reconstruction-based Concept Map (RCM) proposed by the authors in previous 
work (Hirashima et al., 2015; Hirashima, 2024) may offer a solution to the above problem. In 
an RCM task, the teacher first constructs a concept map—referred to in this paper as the 
shared understanding map—that represents the understanding to be shared with all learners, 
such as prerequisite knowledge for the next lesson. This map is then deconstructed into its 
constituent nodes and links, which are provided to learners as components. Learners 
reconstruct the shared understanding map by connecting these given components to form the 
learner map. In this paper, the operation of connecting components is termed the map 
construction activity (concept mapping). A modification activity is defined as (1) disconnecting 
a link in an existing proposition, and (2) reconnecting it to a node to form a proposition. A 
modification is recognized when both actions occur, although they do not need to be 
performed consecutively. From the perspective of a learning activity, prior studies have shown 
that reconstruction of concept maps can promote meaningful learning (Pailai et al., 2017) and 
higher-order thinking (Nurmaya et al., 2023). These findings suggest that RCM activities are 
worth analyzing from a process perspective, as they provide learners with adequate 
opportunity for trial-and-error, even within the reconstruction of predetermined components. 

Rismanto et al. (2024) conducted a process analysis utilizing the aforementioned 
characteristics of RCMs. They divided a concept map into several semantically grouped 
submaps and examined whether the sequential creation of propositions belonging to the same 
submap—i.e., viewing a concept map in terms of semantic groupings—affected 
comprehension of the learning target. However, their analysis focused on the order in which 
propositions consistent with the shared understanding map were created. It did not examine 
how the map score—the degree of agreement between the learner map and the shared 
understanding map—was affected by modification activities during the process. 



In light of the above, this paper poses the research question: How do learners' 
modification activities affect map scores in RCMs? It reports on an analysis of datasets 
obtained from three lessons in which RCMs were used. 
 
 

2. Concept Map and Its Reconstruction 
 

2.1 Concept Map 
 
Concept maps, which visually represent the relationships between concepts, serve two main 
purposes: as a tool for evaluating learners' understanding and as a learning tool for deepening 
that understanding (Cañas et al., 2023). Regarding their use as an evaluation tool, numerous 
methods have been proposed that assess the quality of the constructed map. Novak and 
Gowin (1984) proposed a method focusing on structural features of the map, such as the 
hierarchical arrangement of concepts and the links connecting them. In contrast, McClure and 
Bell (1990) proposed a method that emphasizes the semantic accuracy of each proposition. 
McClure et al. (1999) conducted a comparative analysis of six evaluation methods, including 
the above, from the perspectives of reliability and validity, and systematically organized these 
methods. 

From the perspective of its use as a learning tool, concept mapping has been 
recognized for its effectiveness in promoting learners' metacognition and higher-order thinking. 
Regarding higher-order thinking, Anderson et al. (2001) clarified its constituent elements 
based on Bloom's taxonomy, a classification of educational objectives. Specifically, remember, 
understand, and apply are categorized as lower-order thinking. In contrast, analyze, evaluate, 
and create are regarded as higher-order thinking, which involves deeper cognitive processing. 
As a rationale for the promotion of higher-order thinking through concept mapping, Cañas et 
al. (2017) noted that during proposition construction—such as adding or removing nodes and 
links or changing labels—learners continually engage in meta-evaluation, assessing whether 
the operations they intend to perform appropriately represent their understanding of the 
learning topic. 

The RCMs used in this study function as learning activities in classroom settings and 
thus possess the characteristics of learning tools. At the same time, because this study 
analyzes the relationship between indicators of modification activities during concept mapping 
and the quality of the final maps (map scores), it also addresses their use as evaluation tools. 
Note that, although modification activities have been suggested to be associated with higher-
order thinking, the present study prioritizes quantitatively capturing their basic characteristics. 
Verification of their relationship with higher-order thinking is therefore left for future work. 
 

2.2 Reconstruction-Based Concept Map 
 
In standard concept mapping, learners freely create nodes and links based on their 
understanding and combine them to form propositions. Consequently, even for the same 
learning topic, different learners may use different nodes and links. For example, in a concept 
map about Japan, some learners might represent the concept of Japan as "Japan," while 
others might use "Our country." Moreover, a learner who knows about Japan's main imports 
but not its exports may omit the corresponding propositions. Therefore, evaluating the 
constructed concept maps and their mapping processes requires addressing the diversity of 
learners’ expressions and content. Since this cannot be done without human judgment, it 
places a considerable burden on teachers. 

In contrast, in RCMs, as illustrated in Figure 1, (1) the teacher constructs a shared 
understanding map and (2) deconstructs it into nodes and links. These components are 
subsequently provided to the learner. Then, (3) the learner reconstructs the concept map using 
only the provided components—a defining feature of RCMs. Because the shared 
understanding map and the learner map share the same nodes and links, (4) the two maps 
can be superimposed, and each link examined to determine whether the proposition formed 
by its connected nodes is identical to that in the shared understanding map. Agreement or 



mismatch for each proposition is automatically detected, forming the basis for calculating the 
map score. This comparison can also be visualized, as in the lower left of Figure 1. The map 
score is defined as the ratio of correct propositions—those present in both maps—to the total 
propositions in the shared understanding map. In the example, the shared understanding map 
contains three propositions, and the only correct proposition in the learner map is “Japan -> 
Capital city -> Tokyo,” yielding a score of 1 ∕  3 ≈  0.33. In the visualization, the false 
proposition—i.e., the one present only in the learner map—“Japan -> Main imports -> 
Automobiles” is shown with a solid line, while the missing propositions—those present only in 
the shared understanding map—“Japan -> Main imports -> Crude oil” and “Japan -> Main 
exports -> Automobiles” are shown with dashed lines. This shared-component structure of 
RCMs provides a robust basis for quantitatively analyzing learners’ concept mapping 
processes. 
 

 
Figure 1. Framework for Reconstruction-based Concept Map. 

 
 

3. Classroom Practices and Data Sets 
 
In this study, we analyzed datasets collected by one of the co-authors during an object-
oriented programming course for second-year undergraduate students at a university in 
Indonesia, as part of a teaching practice designed to examine the learning effects of RCMs. 
The practice focused on key topics in object-oriented programming: the first lesson covered 
encapsulation, the second covered inheritance, and the third covered polymorphism. All three 
lessons were conducted in the same format. Hereafter, each topic is abbreviated as En, In, 
and Po, respectively. 

The analysis targeted 30 learners who participated in all three lessons. All had 
completed a basic programming course in their first year, but this was their first exposure to 
object-oriented programming. None had any prior knowledge or experience with concept 
mapping. In each lesson, the teacher began with a 15-minute lecture on the topic. Then, to 
deepen their understanding, the learners used a Web-based application to reconstruct a 
concept map for 15 minutes. During the concept mapping, they were not allowed to refer to 
the teaching materials. Although the Web-based application includes a feedback function 
based on automatic diagnosis for learner maps described in the previous chapter, it was used 
without feedback in this practice. This was intended to replicate the conditions of standard 
concept mapping. 

The shared understanding maps used in these practices were constructed by one of 
the co-authors, then reviewed and revised based on feedback from other members of the 
teaching team. Table 1 presents the counts of nodes and links, as well as the summary 
statistics of map scores for each shared understanding map. Although each dataset covered 
the same learners (n = 30), learners who were deemed not to have engaged in appropriate 



learning activities were excluded from the analysis. Specifically, exclusion was applied when 
either the number of propositions or the time to reconstruct the map was identified as an outlier. 
The number of propositions refers to the cumulative count of propositions created by a 
learner—regardless of correctness or repetition—which serves as an indicator of learner 
activity in RCM tasks. Outliers were defined as values greater than the third quartile + 1.5 × 

the interquartile range, or smaller than the first quartile − 1.5 × the interquartile range. As a 
result, the number of learners analyzed was n = 28 for En, n = 29 for In, and n = 26 for Po. 
 
Table 1. Shared Understanding Maps: Node/Link Counts and Map Score Summary Statistics 

Map Nodes Links Median Mean SD 

En 14 15 .63 .62 .34 

In 12 13 .92 .77 .28 

Po 11 10 .90 .85 .17 

 
 

4. Quantitative Analysis of the Concept Mapping Process 
 

4.1 The Impact of Proposition Changes and False Propositions on Map Scores 
 
In this study, we first examined the number of proposition changes as an indicator of 
modification activity in RCMs. This indicator is defined as the cumulative count of modification 
activities made by a learner. For example, if a learner created the proposition "Japan -> Main 
imports -> Crude oil" and then changed the link destination to "Automobiles," this would be 
counted as one proposition change. Table 2 presents the mean and standard deviation of the 
proposition changes, along with the results of multiple regression analysis described below. 
Due to page limitations, the results of the single regression analysis—conducted with the map 
score as the dependent variable—are omitted; however, no strong correlations were found in 
any of the maps. In this paper, we adopt the widely accepted criterion that r ≥ .70 indicates a 
strong correlation, and correspondingly interpret an R² (or adjusted R² in the case of multiple 
regression) ≥ .50 in regression analyses reflects a strong correlation between the explanatory 

variables and the dependent variable. 
 
Table 2. Mean and Standard Deviation of the Number of Proposition Changes and False 
Propositions / Results of Multiple Regression Analysis on Map Scores 

Map Proposition 
Changes 

False  
Propositions 

Linear  
Regression 

VIF 

En 3.50 (SD = 

3.46) 

6.25 (SD = 

4.44) 

.59 (p < .001) 1.42 

In 4.03 (3.20) 5.76 (4.35) .87 (p < .001) 1.40 

Po 2.19 (2.53) 3.27 (2.76) .88 (p < .001) 2.83 

 
Since proposition changes occur when a learner judges that there are false 

propositions in the map, the map score cannot be explained solely by the proposition changes 
without also considering the number of false propositions. For example, even if the number of 
proposition changes is low, a small number of false propositions in the map may indicate that 
the modification activity was sufficient. Conversely, if there are many false propositions, the 
same number of modifications could be judged as an inadequate response. Therefore, since 
the significance of a modification activity is considered to vary depending on the number of 
false propositions, this study defined the latter as a separate indicator and conducted a 
combined analysis using both. The number of false propositions is defined as the cumulative 
count of false propositions created by a learner, regardless of repetition. For example, in the 
earlier case of changing from “Japan -> Main imports -> Crude oil” to “Japan -> Main imports 
-> Automobiles,” the proposition after the change is a false proposition. In such cases, the 



false proposition is counted in addition to the proposition change. Table 2 presents the mean 
and standard deviation of the false propositions. 

Table 2 shows the results of multiple regression analysis using proposition changes 
and false propositions as explanatory variables, with the map score as the dependent variable. 
The table reports the adjusted R² and the p-value from the overall F-test for the regression 
model. In this paper, we set the significance level at 5%. The Variance Inflation Factor (VIF) 
values are shown in the “VIF” column; in all cases, the VIF was well below the common 
multicollinearity threshold of 10, indicating no multicollinearity among the explanatory 
variables. In this analysis, strong correlations (adjusted R² ≥ .50) were observed for all three 

maps. Although detailed results, such as regression equations and single regression analysis, 
are omitted due to page limitations, the sign of the regression coefficients indicates that false 
propositions negatively affect the map score, whereas proposition changes have a positive 
effect. In single regression analysis, false propositions, when considered alone, showed strong 
correlations with the map score for In and Po maps. This may be attributed to a ceiling effect: 
since the sum of the mean and standard deviation of the map scores shown in Table 1 
exceeded 1 (maximum map score), the weight of each false proposition on the map score was 
relatively large. Intuitively, the more false propositions learners created, the less likely they 
were to correct all of them by the end, which may have further reinforced this effect. While the 
present analysis does not directly examine this possibility, related aspects of these processes 
are analyzed in sections 4.2 and 4.3, including how learners successfully corrected false 
propositions and the proportion of false propositions that remained unaddressed. 

These results quantitatively address the research question of this study—How do 
learners' modification activities affect map scores in RCMs?—by demonstrating that 
modification activities do influence map scores. 
 

4.2 Analysis of Proposition Changes 
 
The analysis in the previous section provides an answer to the research question. 
Nevertheless, this finding alone does not explain how these two indicators capture the nature 
of learners' modification activities or how each is related to the map score. 

Of the two indicators, false propositions are inherently negatively related to the map 
score. As shown in Table 3, when learners were divided into two groups based on whether 
their map score was at or above the median, the high-scoring group (High Group) had 
significantly fewer false propositions than the low-scoring group (Low Group). Since some 
variables did not meet the assumption of normality, all comparisons of means in this study 
were conducted using the Mann-Whitney U test. The effect sizes (r) are also reported in Table 
3 as a supplement to the p-values. The median was chosen as the cutoff because a ceiling 
effect was observed for the In and Po maps. 

 
Table 3. Difference in the Mean Number of False Propositions between the High-Scoring 
Group (High Group) and the Low-Scoring Group (Low Group) 

Map Group False Propositions p and r 

En High Group (n = 14) 4.21 (SD = 3.60) p = .02, 

r = .46 Low Group (n = 14) 8.29 (4.36) 

In High Group (n = 15) 3.20 (2.78) p < .01, 

r = .61 Low Group (n = 14) 8.50 (4.09) 

Po High Group (n = 16) 2.38 (2.50) p = .03, 
r = .44 Low Group (n = 10) 4.70 (2.67) 

 
In contrast, proposition changes differ in their effects on the map score: changes 

targeting correct propositions may lead to a decrease in the map score, whereas those 
targeting false propositions may lead to an increase in the map score. In this section, we report 
the results of our investigation into the types of proposition changes made by the high and low 
groups. 



First, we examined whether there were significant differences in the mean number of 
proposition changes between groups, as shown in Table 4. None of the results were significant, 
suggesting that differences in map scores were influenced more by the qualitative aspects of 
proposition changes than by their quantitative aspects (i.e., the number of proposition 
changes). In this study, the qualitative aspects of proposition changes are defined in terms of 
two factors: (1) the appropriateness of the change target—whether it was applied to a correct 
or a false proposition—and (2) the success or failure of the change—whether a change 
targeting a false proposition resulted in its correction to a correct proposition. Based on these 
two factors, all proposition changes can be classified into combinations of correctness, such 
as "F-C" (false to correct) or "F-F" (false to false), allowing for a comprehensive understanding 
of proposition changes. 

 
Table 4. Difference in the Mean Number of Proposition Changes between the High Group and 
the Low Group 

Map Group Proposition Changes p and r 

En High 3.93 (SD = 4.29) p = .96, r = .01 

Low 3.07 (2.46) 

In High 3.87 (3.44) p = .61, r = .10 

Low 4.21 (3.04) 

Po High 2.19 (2.79) p = .80, r = .05 

Low 2.20 (2.20) 

 
To analyze (1) the appropriateness of the change target, Table 5 presents a breakdown 

of changes into those targeting correct propositions and those targeting false propositions. 
The table reports the mean value for each group, with percentages shown in parentheses, 
indicating each type’s share of the total proposition changes within the group. The results 
indicate that changes targeting false propositions consistently accounted for more than 70% 
of proposition changes in both groups across all three maps. In other words, regardless of 
whether the map score is high or low, it indicates a generally high level of precision in 
proposition changes. 

 
Table 5. Targets of Proposition Changes in the High Group and the Low Group 

Map Group Changes Targeting 
Correct Propositions 

Changes Targeting 
False Propositions 

En High 1.07 (27.27%) 2.86 (72.73%) 

Low 0.36 (11.63%) 2.71 (88.37%) 

In High 0.73 (18.97%) 3.13 (81.03%) 

Low 1.14 (27.12%) 3.07 (72.88%) 

Po High 0.31 (14.29%) 1.88 (85.71%) 

Low 0.60 (27.27%) 1.60 (72.73%) 

 
To analyze (2) the success or failure of the change, we categorized changes targeting 

false propositions into F-C and F-F. Table 6 presents the total number of each type of 
proposition change for learners in each group. The table also reports the p-values and effect 
sizes (w) from chi-square tests comparing the distribution of proposition changes between 
groups within each map, along with the results of residual analyses. In the table, “▲” 

indicates that the value for the corresponding group is significantly higher than the expected 
frequency, while “▽” indicates that it is significantly lower. The results show a clear contrast: 

the high group made significantly more F-C changes in the En and In maps, while the low 
group made significantly more F-F changes. This pattern may reflect a cognitive compensation 
process (diSessa, 1993), in which learners improve their final performance by drawing on 
partial but accurate knowledge to correct earlier errors. In this study, high-scoring learners 
sometimes created false propositions but successfully corrected them, suggesting that they 
were effectively leveraging cognitive compensation processes during concept mapping. 



Table 6. Distribution of the Success or Failure of Proposition Changes Targeting False 
Propositions between the High Group and the Low Group, with Results of Chi-Square Tests 
and Residual Analyses 

Map Group F-C (false to 
correct) 

F-F (false to 
false) 

p and w 

En High 28▲ 12▽ p < .001,  
w = .38 Low 11▽ 27▲ 

In High 33▲ 14▽ p < .001,  

w = .47 Low 9▽ 34▲ 

Po High 21 9 p = .31,  
w = .15 Low 8 8 

 
This difference can also be interpreted within the framework of Reconstruction-Based 

Learning (Hirashima & Watanabe, 2025), which views learning as the refinement of 
constructed meaning—the additional meaning generated from the organization of elemental 
and structural meaning—through the manipulation of external representations. In this 
framework, the high group’s greater success in F-C changes and higher false proposition 
coverage rate (a metric described in the following section) indicate more effective engagement 
in Stage 2 (difference detection) and Stage 3 (conceptual clarification and completion), leading 
to better alignment between internal and external representations. In contrast, the low group’s 
lower F-C rates suggest difficulty in completing this refinement process, even when engaging 
in a comparable number of modification activities. 

A similar tendency was also observed in the Po map, where the majority of proposition 
changes made by the high group were F-C changes (exact binomial test: p = .04, w = .40), 
while the low group did not show this pattern. Taken together, these findings suggest that 
although both groups make a similar number of proposition changes, and most of these target 
false propositions, it is the successful correction of those false propositions that differentiates 
high-scoring learners from low-scoring ones. 

 

4.3 Analysis of False Proposition Coverage Rate 
 
In the previous section, we examined proposition changes made by learners and found a 
significant difference between the high and low groups in terms of the success or failure of 
changes targeting false propositions (Table 6). However, those analyses did not assess the 
extent to which false propositions remained unchanged. For example, if learner A created a 
total of 10 false propositions during the concept mapping and made 9 proposition changes, 
nearly all of their false propositions would have been changed. By contrast, if learner B also 
made 9 proposition changes but created 20 false propositions in total, a large number would 
have remained unchanged. 

In this section, we address the above issue by introducing a metric termed the false 
proposition coverage rate. This metric is defined as the ratio of the number of changes 
targeting false propositions to the number of false propositions, and is conceptually equivalent 
to the recall rate of proposition changes. 

Table 7 presents the results of examining whether there were significant differences in 
false proposition coverage rates between groups. Learners with no false propositions were 
excluded from the analysis, as the coverage rate could not be calculated due to division by 
zero. 

The test results showed significant differences between the high and low groups across 
all three maps. Although the detailed data are omitted here due to page limitations, the low 
group spent as much or more time reconstructing the map than the high group, indicating that 
time use was not an issue. In other words, although the low group spent enough time, about 
70% of their false propositions tended to remain unchanged. 

 



Table 7. Difference in the Mean of False Proposition Coverage Rates between the High Group 
and the Low Group 

Map Group False Proposition 
Coverage Rate 

p and r 

En High (n = 13) .69 (SD = .34) p < .01,  

r = .54 Low (n = 14) .32 (.21) 

In High (n = 13) .99 (.03) p < .001,  

r = .91 Low (n = 13) .36 (.20) 

Po High (n = 11) .68 (.37) p < .05,  

r = .58 Low (n = 10) .28 (.26) 

 
 

5. Conclusion 
 
In this paper, we addressed the lack of empirical studies—both qualitative and quantitative—
that examine individual concept map modification activities, despite their recognized 
importance in promoting learning. Drawing on data from classroom practices involving 
RCMs—which are well-suited for quantitative analysis—we examined how indicators of 
learners’ modification activities relate to their map scores. 

As a result, we found that (1) the number of proposition changes alone was not strongly 
correlated with the map score; however, multiple regression analysis that included both the 
number of proposition changes and false propositions yielded a strong correlation across all 
three datasets. Furthermore, when learners were divided into two groups based on whether 
their map scores were at or above the median, we found that (2) the number of proposition 
changes did not differ significantly between the two groups, and (3) the majority of these 
changes targeted false propositions, indicating a generally high level of precision for 
proposition changes. However, (4) while high-scoring learners were able to successfully 
correct false propositions—an ability interpretable as cognitive compensation—low-scoring 
learners often failed to do so. In addition, the analysis of the false proposition coverage rate 
revealed that (5) many false propositions remained unchanged by the end of the concept 
mapping, suggesting a tendency toward a low recall rate of proposition changes in the low 
group. 

Given that engaging in modification provides learners with valuable learning 
opportunities, the creation of a false proposition does not necessarily require immediate 
correction. However, the low group’s failure to correct false propositions, together with their 
low false proposition coverage rate, are issues that cannot be overlooked. These findings 
highlight the importance of providing targeted support for proposition changes in this group. In 
future work, we plan to analyze common patterns underlying failures to correct false 
propositions and identify factors contributing to low coverage rates, with the aim of developing 
effective support strategies.  

This study also has several limitations. First, the relatively small scale of the present 
analysis may limit statistical power; therefore, conducting studies on larger and more diverse 
datasets will be an important next step. Second, because RCMs involve constructing concept 
maps solely from predetermined components, the results cannot be directly generalized to 
standard, free-form concept mapping. Nevertheless, our findings underscore the importance 
of considering both modification activities and false proposition coverage when analyzing more 
open-ended mapping processes. Building on this insight, future work will extend the analysis 
to the standard concept mapping tasks and examine whether the observed patterns hold in 
those contexts. 
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