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Abstract: Introductory programming is an essential component of computer science
education, yet many students find it challenging. An important factor in students’
success in programming courses is their motivation and self-confidence. Numerous
formative assessment systems have been designed to increase students’ self-
confidence. These systems are capable of automatically evaluating student work and
delivering immediate feedback. Students gain confidence as a result of formative
assessment’s automatic feedback, which enables them to better evaluate their own
work and make improvements. Many formative assessment systems ask the same
questions of students with varying skill levels. Therefore, the objectives of this paper
are: first, to introduce an adaptive strategy in formative assessment that poses the
questions using difficulty levels; second, to determine whether this adaptive formative
assessment framework can help students feel more confident by introducing common
code errors, and third, to evaluate how well students performed following an adaptive
formative assessment activity. An experimental study with 62 undergraduate Non-CS
participants (novices) was conducted to accomplish these objectives. In-depth
analyses were performed on the self-rated confidence, test results and completion
time. According to the findings, novices feel significantly better confident after taking
the adaptive formative assessment quizzes. However, the self-rated confidence
declines over the advanced topics of programming. Additionally, students who took part
in the revision adaptive formative assessment exercise performed better on their test.
Findings showed that employing difficulty-based question adaptivity in formative
assessment was more likely to motivate students and increase their self-confidence.

Keywords: Adaptive assessment, Computer programming, Formative feedback,
Introductory programming, Novice students, Self-confidence.

1. Introduction

Introductory programming is an essential subject for students to feel confident about their
computer science studies (Rum and Ismail 2017). Novice programmers find difficulty in:
grasping the fundamental concepts of programming structure; learning programming
language syntax; and identifying errors and troubleshooting program code (Kadar et al., 2021).
Consequently, learning programming necessitates practice and simultaneous mastery (Islam
et al., 2019). In general, novice programmers are ecstatic to be aware of their progress and
the specifics of their errors in order to help guide them in the proper direction, and increase
their confidence in their programming abilities (Zhang et al., 2024). Formative assessment is
providing feedback to a student with the goal of changing their way of thinking or acting to
enhance learning (Shute, 2008). Beyond assessment, it increases novice programmers’ self-
confidence and meta cognitive awareness (Lishinski and Yadav 2021). Although feedback
mechanisms have been well studied, limited is known about novices’ confidence in using
formative feedback to learn introductory programming (Barra et al., 2020). Another limitation
is that all these systems ask the same questions to all students (Luxton-Reilly et al., 2023).
Each learner has strengths, limitations, and favorite subject areas within the framework of the
learning environment. Adaptive assessment process assesses the students with different



abilities with different sets of questions. By starting with easier tasks and progressively
adjusting difficulty, systems maintain novices within an optimal challenge zone. Such
adaptivity encourages early success, builds confidence, and sustains persistence. Recent
advances in Item Response Theory/Computerized Adaptive Testing (IRT/CAT), Bayesian
Knowledge Tracing (BKT), and Deep Knowledge Tracing (DKT) provide tools for such design
(Sharpnack et al., 2024). These models are gaining attention in recent days and these provide
a wide range of advantages in teaching diverse students (Louhab et al., 2018). Integrating
embeddings of code edits, unit-test outcomes, and error traces allows the system to deliver
granular scaffolds, such as debugging prompts or step-wise guidance (Zhao et al., 2023). BKT
offers interpretable mastery estimates for specific knowledge components (KCs). This
transparent KC feedback helps novices understand progress and reduces frustration, a key
factor in sustaining motivation (Shi et al., 2022). These models allow supporting the students
with feedback to make them understand the concepts of computer sciences and prevent from
the cold start problem (Velde et al., 2021). According to the learner's response pattern,
adaptive systems allow them to learn new concepts in real time by modifying questions across
different levels (Marwan et al., 2020; Vesin et al., 2022). These timely supports keep learners
engaged while gradually raising task difficulty. This allows them to overcome cold start
problems and gradually refine the difficulty profile and personalize the learning pathway
(Pankiewicz, 2021; Velde et al., 2021). Research shows that learners' confidence is a powerful
predictor of outcomes including skill development, though cognitive capacity and prior
preparation are important factors in programming success (Shi et al.,, 2022). Thus, the
improvement of programming self-confidence should be a top goal when developing curricula
and assessments (Zhao et al., 2023). By continuously aligning task complexity with learner
readiness, the system fosters confidence, sustains engagement, and supports gradual
mastery of programming concepts. The objective of this paper is to use a difficulty based
adaptivity in formative assessment to increase students’ level of confidence in learning
introductory programming and their actual performance on programming tests. Using the
adaptive formative assessment, the following research questions have been investigated:

1. Can adaptive formative assessment improve the self-confidence of novice

programmers in:

a) accurately predicting the outcomes of fundamental programming concepts?
b) effectively identifying and correcting errors in Python programming?

2. How effective is adaptive formative assessment in facilitating novices’

understanding of distinct conceptual components in programming?

3. To what extent can adaptive formative assessment encourage novice learners to

improve their programming skills?

2. Difficulty-based Adaptive Formative Assessment

The knowledge level of the learners increased by varying the order of the assessment
questions in adaptive approach (Heitmann et al., 2018). Adaptive formative assessments are
customized to each student individually based on their responses to previous test items
(Papanastasiou, 2021). Self-regulated learning abilities, inventiveness, and self-efficacy of
students can be used to adaptively generate assessments that are customized to each student
in terms of question difficulty, assessment length, and question types (e.g., multiple choice,
fill-in-the-blank, or short response) (Yang et al., 2022). Using adaptive assessment, which
organizes a collection of questions into three cognitive levels according to complexity (easy,
moderate, and difficult), programming adaptive testing evaluates students’ knowledge in
programming courses (Chatzopoulou and Economides, 2010). This helps to create
meaningful feedback for students and supports their learning process for different levels of
difficulty. Two characteristics were deemed crucial while intending to develop adaptive
formative assessments of programming tasks. For error messages to be properly understood,
feedback needs to be quick and detailed. Second, students must be given the chance to
discover their mistakes after making a number of attempts on different questions. Due to the
nature of these elements, it is necessary to create assessments large enough so that students
may repeat assessments without encountering the same questions twice.



This paper presents how to create an adaptive formative assessment in an efficient manner
so that students can grasp the material and get a motivation of how proficient they are with
computer programming. While considering the limitations of automatic assessment, this
framework emphasizes the importance of achieving comparable difficulty for questions and
maximizes the potential for randomization for exercise tasks. These things could be topics,
questions, a variety of errors, etc. The goals relate to questions with varying degrees of
difficulty. Bloom’s taxonomy offers a well-established cognitive framework that can inform
automated question design for programming learning (Fuller et al., 2007). Research indicates
that higher-order cognitive tasks, such as those aligned with Bloom's "Apply" level, exhibit
higher discrimination indices, meaning they more effectively differentiate between learners of
varying abilities (Hamamoto et al., 2020). This supports the categorization of tasks into
difficulty levels corresponding to Bloom's taxonomy, facilitating the estimation of item difficulty
parameters in IRT models. Difficulties in programming are classified as Bloom’s taxonomy of
programming (Sobral, 2021). This model categorizes programming tasks into three cognitive
levels: Remember (Easy), Understand (Moderate) and Apply (Hard). This research classified
a list of questions in three cognitive levels based on the complexity (like easy, moderate, and
difficult) (Louhab et al., 2018). The adaptive sequencing mechanism is informed by Knowledge
Space Theory (lhichr et al., 2024) which enabled branching rules based on prerequisite
structures among programming concepts. Here easy questions assess the basic concepts,
moderate questions assess comprehensive knowledge and difficult questions do the
applications of the knowledge (Vie et al., 2017). If a student successfully responds to a
moderate question on this assessment when it starts, the subsequent question is hard. If not,
the easy questions will be asked as indicated in Figure-1. It goes on until the system forecasts
the competency level of the students (Simon-Campbell et al., 2018). This study has led us to
create multiple choice question quizzes to introduce common programming errors that are an
excellent method to increase student self-confidence by engaging and helping them remember
the programming content (Ross et al., 2018).
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3. Research method and Data collection

To answer the research questions, this research developed a set of quizzes for basic topics
of introductory programming. Because of its convenience and syntactical simplicity, Python is
a popular programming language used in introductory programming classes (Johnson et al.,
2020). The topics covered include variables, operators, conditionals, loops, and a few
concepts related to functions (Xinogalos et al., 2020).

Population. Dublin City University’s undergraduate students from the Introductory
programming and advanced modules were participated. The data includes 252 students’
programming quiz attempts of 62 students that they submitted at the end of each quiz session.

Survey Questions. In addition to quiz questions, each quiz included survey questions. At the
conclusion of each quiz, they filled out the survey. Four different factors were measured by a
survey consisting of 21 items with use of the post-survey attitude of self-confidence.

* Self-confidence in programming understanding (16 items in total)

» Self-confidence of understanding common code errors (3 items in each quiz)

* Quiz difficulty level

4. Results

4.1 Research Question-1

The first research question is, “Can adaptive formative assessment improve the self-
confidence of novice programmers a) accurately predicting the outcomes of fundamental
programming concepts b) effectively identifying and correcting errors in Python
programming?”. This question focuses on whether the difficulty-based adaptive formative
assessment increases their confidence in their ability to comprehend the basic concepts of
programming. In formative assessment, Bloom’s difficulty level-based adaptive model is
employed to capture relationships between concepts with confidence. We compared the self-
confidence levels before and after practicing all of the assessment quizzes. Additionally, we
gathered novice students’ confidence in four subjects before and following all the quizzes:
their ability to learn computer programming, create new programs, comprehend how programs
operate, and recognize programming errors. The question was, ‘How confident are you in your
ability to do the following, using a number between 0 and 107".

Table-1. Comparison of the novices’ confidence before and after their quiz attempts

Confidence in Mean Std. Dev Difference t
Pre Post Pre Post Mean SD

Learning 4.63 6.23 2.21 1.59 1.59 2.60 4.832
computer

programming

Designing new 274 477 1.87 2.01 203 272 5.879
programs

Understanding 3.98 6.05 2.25 1.64 206 2.74 5.921

how programs
operate

understanding 4,26 6.19 2.22 1.61 1.93 2.50 6.092

programming
errors
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Figure-2. Mean difference on self-confidence

Table-2. Novices Likert scale responses on Python basic concepts

No Question (I know..) Mean SD
Q1 how to use print statements in Python programming. 4.21 0.87
Q2 how to use the Python programming variables. 3.58 0.90
Q3 what the operators (+, -, *, /, >,<, =) mean in Python programming. 3.71 1.02
Q4 how to use input functions and arithmetic operations. 3.41 0.86
Q5 how to use variables and their type conversions. 3.54 1.06
Q6 the orders of operator precedence in Python programming. 3.57 0.92
Q7 what the comparative operators ( >,<, >=, <=, == & |=) mean. 420 0.98
Q8 how to use if/else statements in Python programming. 3.78 1.08
Q9 the syntax and indentation errors while using if/else statements. 3.13 1.05
Q10 what the logical operators (AND, OR, NOT) mean. 4.00 0.97
Q11 how to use a while loop in Python programming. 3.82 1.12
Q12 what process before or after increment or decrement happens 3.00 0.94
in the while loop of Python programming.
Q13 how to use functions in Python programming. 283 1.13
Q14 how arguments work functions of Python programming. 2.83 1.03
Q15 how to pass arguments in function calls of Python programming. 2.86 1.06
Q16 what are default arguments in functions of Python programming. 2.80 1.13

The mean difference between their confidence levels before and after the quiz attempts is
depicted in Figure-2. It demonstrates that their confidence levels have significantly increased.
Before the quizzes, the confidence scores ranged from 0 to 10, and after the quizzes, they
rose to between 2 and 10. Additionally, the mean value has grown. To determine the impact
of adaptive formative assessment in these subjects, a paired-sample t-test was used. Table-
1 indicates that their confidence levels before and after the quiz exercises differed statistically
significantly. There was a statistically significant difference between the pre-quiz (M = 4.63 out
of 10, SD = 2.212) and the post-quiz (M = 6.23 out of 10, SD = 1.593) for learning computer
programming (t = 4.832, p < 0.001 [two-tailed]). Accordingly, the post-quiz mean was higher
by 4.832 with a 95% confidence interval between 0.34 and 0.88. The corresponding t values
for creating new programs, comprehending how programs work, and recognizing



programming errors are 5.879, 5.921, and 6.092 (p < 0.001 [two-tailed]). This indicates that
the adaptive formative assessment has significant beneficial differences in these contexts.
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Figure-3. All students’ feedback (in % ) on understanding errors

After every quiz, we also asked them about their confidence with a list of basic
concepts as shown in Table-2. Using a self-rated Likert scale, the responses were accepted
that had five possible scores: strongly disagree (1), disagree(2), neutral(3), agree(4), and
strongly agree(5). The students completed five quizzes and provided a self-rated confidence
response of 252 (82.5%) out of 292 attempts. Their distribution of confidence across the topics
shown in the Figure-3. These findings indicate that they feel more confident after they have
completed the adaptive formative assessment quizzes covering the fundamental subjects with
mean scores of 3.5 or higher. However, the self-rated confidence declines over the advanced
topics of programming such as functions as shown in Figure-3. This may reflect students’
limited prior exposure to abstract concepts and the cognitive demands of integrating multiple
new skills.

4.2 Research Question-2

The second research question is, How effective is adaptive formative assessment in facilitating
novices’ understanding of distinct conceptual components in programming?. We have
compiled the percentage of correct answers for different questions of varying complexity
between Non-CS and CS cohorts as shown in Table-3. The corresponding graph illustrated in
Figure-4 compares how two cohorts performed across five quizzes, broken down by question
difficulty (Easy, Moderate, Hard). Analyzing these scores across CS and Non-CS cohorts
helps evaluate whether this design is equitable, adaptive, and informative. Non-CS students
(represented in dotted lines) are more balanced and consistent, especially in Moderate and
Easy questions across most quizzes. Quiz-4 (Loop) is a significant turning point because, as
a result of the quiz content playing, Non-CS did better than CS in every category. Up until
Quiz-5, Non-CS students perform better than CS students on moderate questions. CS



Score (%)

students (represented in continuous lines) consistently perform well on hard questions,
particularly in Quiz-5. Quiz-5 might be easier for CS students, given the cluster of 100s.

Table-3. Correct responses percentage by CS vs Non-CS for Each Quiz and Difficulty Level

Difficulty Moderate Easy Hard

Quiz CS Non-CS CS Non-CS CS Non-CS
1 88.89 77.28 58.33 50.00 87.94 84.82
2 90.64 86.00 72.22 78.59 89.68 86.79
3 70.42 88.51 83.33 59.56 71.37 66.99
4 60.50 90.62 50.00 79.17 82.42 89.20
5 90.48 78.68 100.00 69.20 97.14 86.63
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Figure-4. Correct responses percentage by Difficulty levels across quizzes

4.3 Research Question-3

The next research question is, To what extent can adaptive formative assessment encourage
novice learners to improve their programming skills?. To address this research question, we
then chose to examine if there were significant variations in scores between the two groups of
students who attended and those who did not. Therefore, this study offered a quiz before the
exam in order to determine the effect of the adaptive formative assessment on exam scores.
Prior to the exam, 84 out of 121 students took the quiz. We examined the differences in exam
scores between students who took the quiz and those who did not. To determine the difference
in scores between participants and non-participants, an independent ¢ - test was used. Table-
4 shows the mean difference of the exam score and completion time between participants and
non-participants. These findings show that the adaptive quiz significantly influences both
scores and completion times between quiz participants and non-participants.

Table-4. Mean difference between quiz participants and non-participants

Aspect Participant N Mean SD
Score Yes 84 6.33 1.500
No 37 6.05 1.914
Time Taken Yes 84 15.4014 6.79762
No 37 16.6420 5.26143

5. Discussion

This study was driven to explore how an adaptive formative assessment might increase
novices’ confidence in their ability to learn programming. We employed two different kinds of
explicit interventions to address the research questions, such as students’ self-rated



confidence and their actual exam scores following the quizzes. By exploring novices’ self-rated
confidence and evaluating whether adaptive formative assessment would help them, this
study found that there was a statistically significant difference between the pre and post self-
confident values. According to the findings, the majority of students entered with high
confidence, while just a small percentage entered with low confidence. This implies that the
majority of students think that learning from mistakes through adaptive formative assessment
aids in their comprehension of fundamental concepts of programming. Additionally, it shows
how adaptive assessments improved their comprehension of errors.

Overall, the self-rated confidence, exam score, and completion time have a significant positive
correlation. As a conclusion, adaptive formative assessment can be employed to teach
novices introductory programming concepts through increasing their self-confidence and
helping them learn from their mistakes. However, adaptive formative assessment may
produce unintended negative outcomes when difficulty calibration is misaligned—for example,
assigning overly simple tasks may reduce engagement, while overly challenging ones can
harm motivation and confidence. Additionally, abrupt shifts in task difficulty may impose
excessive cognitive load, particularly for novices who are still grappling with foundational
concepts. These risks underscore the importance of designing adaptive systems that balance
responsiveness with stability. As they can effectively aid in the learning of programming, one
approach we proposed in this contribution is to develop formative quizzes with adaptive
techniques and difficulty levels. As a result, learning opportunities have expanded, increasing
students’ confidence, and understanding the common code errors. Because the questions in
the evaluation system are only shown dependent on the responses to earlier questions.
Therefore, proficient learners do not require more time. It can be a viable teaching and learning
tool for introductory programming.

5.1 Limitations & Future work

Here, a key factor in adaptive formative assessment is programming complexity. However, the
measure of programming complexity was tied to the adaptive system’s classification of
questions as easy, moderate, or hard. While this provided a practical framework, it does not
fully capture the nuanced cognitive demands of different programming concepts (e.g., syntax
vs. algorithmic reasoning, or loops vs. recursion). As a result, some tasks classified at the
same difficulty level may not have been experienced equally across students. Second, the
study relied on self-reported confidence ratings. Although these measures provide valuable
insights into student perceptions, they may not always align with demonstrated competence.
Students may overestimate or underestimate their understanding, which introduces the risk of
bias in interpreting adaptive assessment outcomes. Third, cohort differences (e.g., CS vs.
non-CS students) and prior exposure to programming were not fully controlled. This may
explain observed variability in confidence, particularly on advanced topics, where background
knowledge could strongly influence both performance and self-assessment. Finally, the
adaptive system did not incorporate more sophisticated models such as item response theory
or learner modeling to account for differences across cohorts, languages, or problem types.
This limits the generalizability of the system’s difficulty calibration. Future work could enhance
with different question suggestions utilizing other methods, including item response theory
(Yang et al., 2022).

Also, Generating questions according to difficulty levels using Artificial Intelligence (Al)
tools is also a major potential for adaptive formative assessment in programming. Some
researchers focus on leveraging Al to create programming questions (Doughty et al., 2024).
The ability to classify the questions according to their level of difficulty is lacking, though. As a
result, this study recommends using Al to categorize the questions based on their degree of
difficulty.
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