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Abstract: Introductory programming is an essential component of computer science 
education, yet many students find it challenging. An important factor in students’ 
success in programming courses is their motivation and self-confidence. Numerous 
formative assessment systems have been designed to increase students’ self-
confidence. These systems are capable of automatically evaluating student work and 
delivering immediate feedback. Students gain confidence as a result of formative 
assessment’s automatic feedback, which enables them to better evaluate their own 
work and make improvements. Many formative assessment systems ask the same 
questions of students with varying skill levels. Therefore, the objectives of this paper 
are: first, to introduce an adaptive strategy in formative assessment that poses the 
questions using difficulty levels; second, to determine whether this adaptive formative 
assessment framework can help students feel more confident by introducing common 
code errors, and third, to evaluate how well students performed following an adaptive 
formative assessment activity. An experimental study with 62 undergraduate Non-CS 
participants (novices) was conducted to accomplish these objectives. In-depth 
analyses were performed on the self-rated confidence, test results and completion 
time. According to the findings, novices feel significantly better confident after taking 
the adaptive formative assessment quizzes. However, the self-rated confidence 
declines over the advanced topics of programming. Additionally, students who took part 
in the revision adaptive formative assessment exercise performed better on their test. 
Findings showed that employing difficulty-based question adaptivity in formative 
assessment was more likely to motivate students and increase their self-confidence. 
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1. Introduction 
 
Introductory programming is an essential subject for students to feel confident about their 
computer science studies (Rum and Ismail 2017). Novice programmers find difficulty in: 
grasping the fundamental concepts of programming structure; learning programming 
language syntax; and identifying errors and troubleshooting program code (Kadar et al., 2021). 
Consequently, learning programming necessitates practice and simultaneous mastery (Islam 
et al., 2019). In general, novice programmers are ecstatic to be aware of their progress and 
the specifics of their errors in order to help guide them in the proper direction, and increase 
their confidence in their programming abilities (Zhang et al., 2024). Formative assessment is 
providing feedback to a student with the goal of changing their way of thinking or acting to 
enhance learning (Shute, 2008). Beyond assessment, it increases novice programmers’ self-
confidence and meta cognitive awareness (Lishinski and Yadav 2021). Although feedback 
mechanisms have been well studied, limited is known about novices’ confidence in using 
formative feedback to learn introductory programming (Barra et al., 2020). Another limitation 
is that all these systems ask the same questions to all students (Luxton-Reilly et al., 2023). 
Each learner has strengths, limitations, and favorite subject areas within the framework of the 
learning environment. Adaptive assessment process assesses the students with different 



abilities with different sets of questions. By starting with easier tasks and progressively 
adjusting difficulty, systems maintain novices within an optimal challenge zone. Such 
adaptivity encourages early success, builds confidence, and sustains persistence. Recent 
advances in Item Response Theory/Computerized Adaptive Testing (IRT/CAT), Bayesian 
Knowledge Tracing (BKT), and Deep Knowledge Tracing (DKT) provide tools for such design 
(Sharpnack et al., 2024). These models are gaining attention in recent days and these provide 
a wide range of advantages in teaching diverse students (Louhab et al., 2018). Integrating 
embeddings of code edits, unit-test outcomes, and error traces allows the system to deliver 
granular scaffolds, such as debugging prompts or step-wise guidance (Zhao et al., 2023). BKT 
offers interpretable mastery estimates for specific knowledge components (KCs). This 
transparent KC feedback helps novices understand progress and reduces frustration, a key 
factor in sustaining motivation (Shi et al., 2022).  These models allow supporting the students 
with feedback to make them understand the concepts of computer sciences and prevent from 
the cold start problem (Velde et al., 2021). According to the learner’s response pattern, 
adaptive systems allow them to learn new concepts in real time by modifying questions across 
different levels (Marwan et al., 2020; Vesin et al., 2022). These timely supports keep learners 
engaged while gradually raising task difficulty. This allows them to overcome cold start 
problems and gradually refine the difficulty profile and personalize the learning pathway 
(Pankiewicz, 2021; Velde et al., 2021). Research shows that learners' confidence is a powerful 
predictor of outcomes including skill development, though cognitive capacity and prior 
preparation are important factors in programming success (Shi et al., 2022).  Thus, the 
improvement of programming self-confidence should be a top goal when developing curricula 
and assessments (Zhao et al., 2023). By continuously aligning task complexity with learner 
readiness, the system fosters confidence, sustains engagement, and supports gradual 
mastery of programming concepts. The objective of this paper is to use a difficulty based 
adaptivity in formative assessment to increase students’ level of confidence in learning 
introductory programming and their actual performance on programming tests. Using the 
adaptive formative assessment, the following research questions have been investigated:  

1. Can adaptive formative assessment improve the self-confidence of novice 
programmers in:  

a) accurately predicting the outcomes of fundamental programming concepts?  
b) effectively identifying and correcting errors in Python programming?  

2. How effective is adaptive formative assessment in facilitating novices’ 
understanding of distinct conceptual components in programming?  
3. To what extent can adaptive formative assessment encourage novice learners to 
improve their programming skills?  

 

2. Difficulty-based Adaptive Formative Assessment  
 
The knowledge level of the learners increased by varying the order of the assessment 
questions in adaptive approach (Heitmann et al., 2018). Adaptive formative assessments are 
customized to each student individually based on their responses to previous test items 
(Papanastasiou, 2021). Self-regulated learning abilities, inventiveness, and self-efficacy of 
students can be used to adaptively generate assessments that are customized to each student 
in terms of question difficulty, assessment length, and question types (e.g., multiple choice, 
fill-in-the-blank, or short response) (Yang et al., 2022). Using adaptive assessment, which 
organizes a collection of questions into three cognitive levels according to complexity (easy, 
moderate, and difficult), programming adaptive testing evaluates students’ knowledge in 
programming courses (Chatzopoulou and Economides, 2010). This helps to create 
meaningful feedback for students and supports their learning process for different levels of 
difficulty. Two characteristics were deemed crucial while intending to develop adaptive 
formative assessments of programming tasks. For error messages to be properly understood, 
feedback needs to be quick and detailed. Second, students must be given the chance to 
discover their mistakes after making a number of attempts on different questions. Due to the 
nature of these elements, it is necessary to create assessments large enough so that students 
may repeat assessments without encountering the same questions twice. 



This paper presents how to create an adaptive formative assessment in an efficient manner 
so that students can grasp the material and get a motivation of how proficient they are with 
computer programming. While considering the limitations of automatic assessment, this 
framework emphasizes the importance of achieving comparable difficulty for questions and 
maximizes the potential for randomization for exercise tasks. These things could be topics, 
questions, a variety of errors, etc. The goals relate to questions with varying degrees of 
difficulty. Bloom’s taxonomy offers a well-established cognitive framework that can inform 
automated question design for programming learning (Fuller et al., 2007). Research indicates 
that higher-order cognitive tasks, such as those aligned with Bloom's "Apply" level, exhibit 
higher discrimination indices, meaning they more effectively differentiate between learners of 
varying abilities (Hamamoto et al., 2020). This supports the categorization of tasks into 
difficulty levels corresponding to Bloom's taxonomy, facilitating the estimation of item difficulty 
parameters in IRT models. Difficulties in programming are classified as Bloom’s taxonomy of 
programming (Sobral, 2021). This model categorizes programming tasks into three cognitive 
levels: Remember (Easy), Understand (Moderate) and Apply (Hard). This research classified 
a list of questions in three cognitive levels based on the complexity (like easy, moderate, and 
difficult) (Louhab et al., 2018). The adaptive sequencing mechanism is informed by Knowledge 
Space Theory (Ihichr et al., 2024) which enabled branching rules based on prerequisite 
structures among programming concepts. Here easy questions assess the basic concepts, 
moderate questions assess comprehensive knowledge and difficult questions do the 
applications of the knowledge (Vie et al., 2017). If a student successfully responds to a 
moderate question on this assessment when it starts, the subsequent question is hard. If not, 
the easy questions will be asked as indicated in Figure-1. It goes on until the system forecasts 
the competency level of the students (Simon-Campbell et al., 2018). This study has led us to 
create multiple choice question quizzes to introduce common programming errors that are an 
excellent method to increase student self-confidence by engaging and helping them remember 
the programming content (Ross et al., 2018).  
 

 
Figure-1. Adaptive strategy  



3.  Research method and Data collection  
 
To answer the research questions, this research developed a set of quizzes for basic topics 
of introductory programming. Because of its convenience and syntactical simplicity, Python is 
a popular programming language used in introductory programming classes (Johnson et al., 
2020). The topics covered include variables, operators, conditionals, loops, and a few 
concepts related to functions (Xinogalos et al., 2020). 
 
Population. Dublin City University’s undergraduate students from the Introductory 
programming and advanced modules were participated. The data includes 252 students’ 
programming quiz attempts of 62 students that they submitted at the end of each quiz session.  
 
Survey Questions. In addition to quiz questions, each quiz included survey questions. At the 
conclusion of each quiz, they filled out the survey. Four different factors were measured by a 
survey consisting of 21 items with use of the post-survey attitude of self-confidence.  

• Self-confidence in programming understanding (16 items in total) 
• Self-confidence of understanding common code errors (3 items in each quiz) 
• Quiz difficulty level  
 

4. Results  

4.1 Research Question-1  
 
The first research question is, “Can adaptive formative assessment improve the self-
confidence of novice programmers a) accurately predicting the outcomes of fundamental 
programming concepts b) effectively identifying and correcting errors in Python 
programming?”. This question focuses on whether the difficulty-based adaptive formative 
assessment increases their confidence in their ability to comprehend the basic concepts of 
programming. In formative assessment, Bloom’s difficulty level-based adaptive model is 
employed to capture relationships between concepts with confidence. We compared the self-
confidence levels before and after practicing all of the assessment quizzes. Additionally, we 
gathered novice students’ confidence in four subjects before and following all the quizzes: 
their ability to learn computer programming, create new programs, comprehend how programs 
operate, and recognize programming errors. The question was, ‘How confident are you in your 
ability to do the following, using a number between 0 and 10?’.  
 
Table-1. Comparison of the novices’ confidence before and after their quiz attempts 

Confidence in  Mean 
Pre   Post 

Std. Dev 
Pre   Post 

Difference 
Mean  SD 

    t 
 

Learning 
computer  

programming 

4.63  6.23 2.21  1.59 1.59   2.60 4.832 

Designing new 
programs 

2.74  4.77  1.87  2.01 2.03   2.72  5.879 

Understanding 
how programs 

operate 

3.98  6.05  2.25  1.64  2.06   2.74  5.921 

understanding 
programming 
errors 

4.26  6.19  2.22  1.61 1.93   2.50  6.092 



 
Figure-2. Mean difference on self-confidence  
 
Table-2. Novices Likert scale responses on Python basic concepts 

No            Question (I know..)                                                                        Mean  SD 

Q1   how to use print statements in Python programming.                              4.21  0.87 

Q2   how to use the Python programming variables.                                       3.58  0.90 

Q3   what the operators (+, -, *, /, >,<, =) mean in Python programming.        3.71  1.02 

Q4   how to use input functions and arithmetic operations.                             3.41  0.86 

Q5   how to use variables and their type conversions.                                    3.54  1.06 

Q6   the orders of operator precedence in Python programming.                   3.57  0.92 

Q7   what the comparative operators ( >,<, >=, <=, == & !=) mean.                4.20  0.98 

Q8   how to use if/else statements in Python programming.                            3.78  1.08 

Q9   the syntax and indentation errors while using if/else statements.            3.13  1.05 

Q10  what the logical operators (AND, OR, NOT) mean.                                4.00  0.97 

Q11  how to use a while loop in Python programming.                                   3.82   1.12 

Q12  what process before or after increment or decrement happens             3.00   0.94 
  in the while loop of Python programming. 

Q13  how to use functions in Python programming.                                       2.83   1.13 

Q14  how arguments work functions of Python programming.                       2.83   1.03 

Q15  how to pass arguments in function calls of Python programming.         2.86   1.06 

Q16  what are default arguments in functions of Python programming.         2.80   1.13 

 

The mean difference between their confidence levels before and after the quiz attempts is 
depicted in Figure-2. It demonstrates that their confidence levels have significantly increased. 
Before the quizzes, the confidence scores ranged from 0 to 10, and after the quizzes, they 
rose to between 2 and 10. Additionally, the mean value has grown. To determine the impact 
of adaptive formative assessment in these subjects, a paired-sample t-test was used. Table-
1 indicates that their confidence levels before and after the quiz exercises differed statistically 
significantly. There was a statistically significant difference between the pre-quiz (M = 4.63 out 
of 10, SD = 2.212) and the post-quiz (M = 6.23 out of 10, SD = 1.593) for learning computer 
programming (t = 4.832, p < 0.001 [two-tailed]). Accordingly, the post-quiz mean was higher 
by 4.832 with a 95% confidence interval between 0.34 and 0.88. The corresponding t values 
for creating new programs, comprehending how programs work, and recognizing 



programming errors are 5.879, 5.921, and 6.092 (p < 0.001 [two-tailed]). This indicates that 
the adaptive formative assessment has significant beneficial differences in these contexts. 
 

 
Figure-3. All students’ feedback (in % ) on understanding errors 

 
After every quiz, we also asked them about their confidence with a list of basic 

concepts as shown in Table-2. Using a self-rated Likert scale, the responses were accepted 
that had five possible scores: strongly disagree (1), disagree(2), neutral(3), agree(4), and 
strongly agree(5). The students completed five quizzes and provided a self-rated confidence 
response of 252 (82.5%) out of 292 attempts. Their distribution of confidence across the topics 
shown in the Figure-3. These findings indicate that they feel more confident after they have 
completed the adaptive formative assessment quizzes covering the fundamental subjects with 
mean scores of 3.5 or higher. However, the self-rated confidence declines over the advanced 
topics of programming such as functions as shown in Figure-3. This may reflect students’ 
limited prior exposure to abstract concepts and the cognitive demands of integrating multiple 
new skills. 

4.2 Research Question-2  
 

The second research question is, How effective is adaptive formative assessment in facilitating 
novices’ understanding of distinct conceptual components in programming?. We have 
compiled the percentage of correct answers for different questions of varying complexity 
between Non-CS and CS cohorts as shown in Table-3. The corresponding graph illustrated in 
Figure-4 compares how two cohorts performed across five quizzes, broken down by question 
difficulty (Easy, Moderate, Hard). Analyzing these scores across CS and Non-CS cohorts 
helps evaluate whether this design is equitable, adaptive, and informative. Non-CS students 
(represented in dotted lines) are more balanced and consistent, especially in Moderate and 
Easy questions across most quizzes. Quiz-4 (Loop) is a significant turning point because, as 
a result of the quiz content playing, Non-CS did better than CS in every category. Up until 
Quiz-5, Non-CS students perform better than CS students on moderate questions. CS 



students (represented in continuous lines) consistently perform well on hard questions, 
particularly in Quiz-5. Quiz-5 might be easier for CS students, given the cluster of 100s. 
 

Table-3. Correct responses percentage by CS vs Non-CS for Each Quiz and Difficulty Level 

Difficulty  
Quiz 

   Moderate 
 CS      Non-CS 

     Easy 
CS      Non-CS 

     Hard 
CS      Non-CS 

 1  88.89    77.28       58.33    50.00 87.94   84.82 

 2  90.64    86.00       72.22    78.59 89.68   86.79 

 3  70.42    88.51       83.33    59.56 71.37   66.99 

 4  60.50    90.62       50.00    79.17 82.42   89.20 

 5  90.48    78.68      100.00   69.20 97.14   86.63 

 
 

 Figure-4. Correct responses percentage by Difficulty levels across quizzes   

4.3  Research Question-3 
 
The next research question is, To what extent can adaptive formative assessment encourage 
novice learners to improve their programming skills?. To address this research question, we 
then chose to examine if there were significant variations in scores between the two groups of 
students who attended and those who did not. Therefore, this study offered a quiz before the 
exam in order to determine the effect of the adaptive formative assessment on exam scores. 
Prior to the exam, 84 out of 121 students took the quiz. We examined the differences in exam 
scores between students who took the quiz and those who did not. To determine the difference 
in scores between participants and non-participants, an independent t - test was used. Table-
4 shows the mean difference of the exam score and completion time between participants and 
non-participants. These findings show that the adaptive quiz significantly influences both 
scores and completion times between quiz participants and non-participants.  
 

Table-4. Mean difference between quiz participants and non-participants 

Aspect   Participant  N  Mean  SD  

Score  Yes  84  6.33  1.500  

 No  37  6.05  1.914 

   Time Taken Yes  84  15.4014  6.79762  

 No  37  16.6420  5.26143 

 
5. Discussion 
 
This study was driven to explore how an adaptive formative assessment might increase 
novices’ confidence in their ability to learn programming. We employed two different kinds of 
explicit interventions to address the research questions, such as students’ self-rated 



confidence and their actual exam scores following the quizzes. By exploring novices’ self-rated 
confidence and evaluating whether adaptive formative assessment would help them, this 
study found that there was a statistically significant difference between the pre and post self-
confident values. According to the findings, the majority of students entered with high 
confidence, while just a small percentage entered with low confidence. This implies that the 
majority of students think that learning from mistakes through adaptive formative assessment 
aids in their comprehension of fundamental concepts of programming. Additionally, it shows 
how adaptive assessments improved their comprehension of errors.  
 
Overall, the self-rated confidence, exam score, and completion time have a significant positive 
correlation. As a conclusion, adaptive formative assessment can be employed to teach 
novices introductory programming concepts through increasing their self-confidence and 
helping them learn from their mistakes. However, adaptive formative assessment may 
produce unintended negative outcomes when difficulty calibration is misaligned—for example, 
assigning overly simple tasks may reduce engagement, while overly challenging ones can 
harm motivation and confidence. Additionally, abrupt shifts in task difficulty may impose 
excessive cognitive load, particularly for novices who are still grappling with foundational 
concepts. These risks underscore the importance of designing adaptive systems that balance 
responsiveness with stability. As they can effectively aid in the learning of programming, one 
approach we proposed in this contribution is to develop formative quizzes with adaptive 
techniques and difficulty levels. As a result, learning opportunities have expanded, increasing 
students’ confidence, and understanding the common code errors. Because the questions in 
the evaluation system are only shown dependent on the responses to earlier questions. 
Therefore, proficient learners do not require more time. It can be a viable teaching and learning 
tool for introductory programming.  

5.1 Limitations & Future work 
 
Here, a key factor in adaptive formative assessment is programming complexity. However, the 
measure of programming complexity was tied to the adaptive system’s classification of 
questions as easy, moderate, or hard. While this provided a practical framework, it does not 
fully capture the nuanced cognitive demands of different programming concepts (e.g., syntax 
vs. algorithmic reasoning, or loops vs. recursion). As a result, some tasks classified at the 
same difficulty level may not have been experienced equally across students. Second, the 
study relied on self-reported confidence ratings. Although these measures provide valuable 
insights into student perceptions, they may not always align with demonstrated competence. 
Students may overestimate or underestimate their understanding, which introduces the risk of 
bias in interpreting adaptive assessment outcomes. Third, cohort differences (e.g., CS vs. 
non-CS students) and prior exposure to programming were not fully controlled. This may 
explain observed variability in confidence, particularly on advanced topics, where background 
knowledge could strongly influence both performance and self-assessment. Finally, the 
adaptive system did not incorporate more sophisticated models such as item response theory 
or learner modeling to account for differences across cohorts, languages, or problem types. 
This limits the generalizability of the system’s difficulty calibration. Future work could enhance 
with different question suggestions utilizing other methods, including item response theory 
(Yang et al., 2022). 
 

Also, Generating questions according to difficulty levels using Artificial Intelligence (AI) 
tools is also a major potential for adaptive formative assessment in programming. Some 
researchers focus on leveraging AI to create programming questions (Doughty et al., 2024). 
The ability to classify the questions according to their level of difficulty is lacking, though. As a 
result, this study recommends using AI to categorize the questions based on their degree of 
difficulty. 
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