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Abstract: Recent educational research has highlighted the necessity of AI literacy. To 
use AI effectively in problem-solving, it is important to understand the nature of human 
intelligence in it as well. As a first step to develop its learning framework, this study 
designed learning materials and an activity for students not majoring in information 
science. Students studied problem solving through the construction of 
production-system models with instructional texts. While most students could not 
successfully construct all models, we confirmed that model construction can foster 
students’ awareness of the nature of human thought. 
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1. Introduction 
 
As AI technology has rapidly progressed and spread, educational research has highlighted the 
necessity of AI literacy (Almatraf, Johri, & Lee, 2023; Long, & Magerko, 2020) in modern 
society. Several attempts to promote AI literacy have been made to enable students to 
understand AI and its effective and ethical use. While definitions of constructs of AI literacy 
vary across researchers (Almatraf et al., 2023), many frameworks incorporate common 
elements, including recognition of AI's existence, understanding of AI principles, skills for 
using AI and evaluating its output, and ethical considerations in AI. 

To effectively use AI in problem-solving, it is important to understand the nature of 
human intelligence in it. Pinski and Benlian (2023) proposed AI literacy, including 
understanding the roles of both humans and AI in human–AI collaboration and interaction, as 
AI artifacts are autonomous, aware of their environment, functionally inconsistent, and not 
transparent, while conventional information systems are used by humans to obtain consistent 
outcomes from defined inputs. Long and Magerko (2020) included a competency for analyzing 
and discussing features and differences among human, animal, and machine intelligence in AI 
literacy. Therefore, it is effective to improve the understanding of human intelligence to 
promote one aspect of AI literacy as problem-solving competencies. For this, approaches 
exploring human intelligence in cognitive science would be promising but also difficult for 
novice learners. 

The final goal of this study is to develop a learning framework to study the nature of 
human intelligence in problem solving. This framework adopts the construction of 
computational models that have been used in cognitive science research as a learning 
activity. As a first step, the current study designed learning materials and an activity for novice 
students. While model construction is useful in studying invisible targets, it remains an 
intensive and challenging task requiring advanced computing skills. Thus, we preliminarily 
confirmed the model construction by students not majoring in information science.  



2. Learning through the Construction of Problem-Solving Models 
 

2.1 Learning by modeling 
 
Cognitive science emerged simultaneously with AI from the 1956 Dartmouth workshop. In 
addition to building an intelligent machine, AI’s main goals involve discovering the nature of 
intelligence (Schank, 1987). Cognitive science research has employed empirical studies of 
human behavior and computational models to understand the human mind (Schunn, Crowley, 
& Okada, 1998).  

In addition to science research, science education uses models to allow learners to 
interpret scientific knowledge. Beyond model use, the construction and simulation of models 
by learners have also been examined (e.g., Clement, 2000; Gilbert, 2004). While model 
construction is generally challenging, requiring extensive skills training, it is promising for 
examining invisible targets such as cognitive processes. This modeling can make hidden 
assumptions explicit and activate reflective thinking or meta-monitoring in cognitive processes 
(Fum, Del Missier, & Stocco, 2007; Miwa, Morita, Nakaike, & Terai, 2014). 

We developed a learning framework in which undergraduate students create models in a 
production system for novices, called DoCoPro (Nakaike, Miwa, Morita, & Terai, 2009). We 
conducted practices in university cognitive science classes and confirmed the learning effects 
of model construction (e.g., Saito, Miwa, Kanzaki, Terai, Kojima, Nakaike, & Morita, 2013; 
Miwa, Kanzaki, Terai, Kojima, Nakaike, Morita, & Saito, 2015). However, some students in the 
classes failed to construct successful models and did not gain sufficient learning effects, 
although they majored in informatics. 
 

2.2 Learning environment and materials used in this study 
 

This study used DoCoPro as the learning environment. To allow novices to experience 
model construction, DoCoPro limits constructs. Students only need to learn about if-then rules, 
working memory, matching, and built-in functions (e.g., functions to test whether two values 
are equal and to add an assertion to the working memory). DoCoPro includes no function to 
resolve conflicts among rules; if multiple rules are triggered at one step, the first rule in the 
array fires. It also has no functions to efficiently perform simulation or to represent human 
cognitive functions for scientific research. Instead, it helps students examine rules through trial 
and error providing functions to test these rules in a variety of ways. 
 

 
Figure 1. Part of a screenshot of DoCoPro. 

 



Figure 1 shows a screenshot of DoCoPro, in which a student has constructed a model 
by inputting the initial state of a problem in the left working-memory frame, editing if-then rules 
in the middle frame, and simulating problem-solving by executing the model with the controller 
in the upper frame. 

DoCoPro can present HTML documents as instructional texts in the right frame of 
Figure 1. Each document can include code in a CDATA Section, enabling DoCoPro to perform 
such actions as setting specific values in the working memory or adding an incomplete rule to 
the rules frame. This function of the instructional texts allows DoCoPro to guide novices in 
experiencing model construction.  

While DoCoPro is a simple tool that has limited constructs, it can still be difficult for 
novice students who have not trained computing skills. Therefore, it was enhanced to allow 
the editing of states in the working memory and conditions and actions in the rules by creating 
and arranging blocks of values and variables. Figure 2 demonstrates the editing of an action in 
a rule. This helps novices create models using consistent problem descriptions. They 
occasionally fail to create an executable model because they use inconsistent descriptions 
between the working memory and rules.  
 

 
Figure 2. Edit of an action in a rule by arranging blocks. 

 
This study also designed learning materials to guide the experience of model 

construction by novice students, as provided in the instructional-texts frame. The text consists 
of four chapters. The first explains if-then rules and reasoning using the example of animal 
classification like the zookeeper in Winston (1985). Using a working memory and an if-then 
rule, students learn to model a thought to lead to the new assertion “an animal is a bird” from 
the knowledge “if x has feathers, then x is a bird” and the assertion “the animal has feathers.” 
They also create the rule “if x is a bird, and x swims in water, then x is a penguin” and learn 
chaining reasoning using the two rules. The two rules are provided from the texts, and 
students merely input them. 

In the second chapter, students learn a framework to model problem-solving through the 
example of traveling to school. They are first introduced to the framework “reaching a goal 
state from an initial state through state transitions by applying operators” and are then 
instructed to describe states in working memory and to implement operators with rules. They 
input the initial state (at Suzumenomiya-station 1 ) and the move-by-train rule “if at 
Suzumenomiya-station, then delete (at Suzumenomiya-station) and add (at 
Utsunomiya-station1).” They create the next move-by-bus rule to travel to the university from 
Utsunomiya Station on their own. The final rule to finish the problem-solving process when 
reaching the goal state is provided. Students reproduce the entire process from 
Suzumenomiya Station to the university via Utsunomiya Station by train and bus.  

 
1 Suzumenomiya and Utsunomiya Stations are located near the first author’s university. 

Many students use these stations. 



The third chapter shows a more complex model, building blocks. Figure 3 gives part of 
the third chapter. While it only requires stacking a roof block on a wall block, each rule of the 
model must delete and add multiple state descriptions. This model includes five rules. 
Students are given two of these, create the other two according to rules described in natural 
language, and create the final rule on their own. 
 

  
Figure 3. Part of the third chapter of the instructional texts. 
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Figure 4. Initial and goal states in the robot and banana problem. 

 
The final chapter presents the robot and banana problem, an altered version of the 

famous toy problem of the monkey and the banana. Its initial and goal states are illustrated in 
Figure 4. In this problem, the robot is to carry the box to the center of the room and retrieves 
the banana by standing on the box. This chapter provides four rules, described in natural 
language. Students design descriptions to represent the initial state in the working memory, 
create the four rules with descriptions, and create a final rule on their own. 

The building blocks and the robot and banana problem are simple. Nevertheless, their 
modeling is more difficult than logical thinking using domain knowledge, as in the first chapter. 
Thus, these materials are expected to foster students’ awareness of thinking that is easy or 
difficult for humans.  



3. Empirical Study 
 

3.1 Method 
 
We empirically assessed whether novice students successfully constructed models with 
DoCoPro and the materials previously described. In all, 10 undergraduate students in the 
department of economics participated in lectures on model construction as part of an 
information literacy course. They learned basic computer operations, use of office suite 
software, and composition of documents and slides to present their own ideas in the course.  

Three lectures on model construction were provided. In the first, the students received 
an explanation of the summary and purpose of the model construction lectures. They then 
learned model construction according to the first to third chapters of the instructional texts of 
DoCoPro. They were instructed to complete the three chapters before the next lecture. In the 
second lecture, they worked on model construction of the robot and banana problem, following 
the fourth chapter. 

Finally, for the third lecture, the students were given two worksheets. One presented a 
new problem, and they described its initial and goal states as well as if-then rules that could 
solve the problem. In the other worksheet, students answered three questions: why is model 
construction so difficult, where does humans thought excel, and what did you learn in the 
model construction? The analytical results of the worksheets are omitted here due to the page 
limitation. 
 

3.2 Data analysis 
 
We checked whether the students successfully completed the robot and banana model 
problem. Their models were divided into the following three categories. 
⚫ failed models did not function at all. 
⚫ incomplete models only reproduced part of the robot and banana problem. 
⚫ complete models entirely reproduced the problem.  
We also added labels representing the cause of the failure for each failed/incomplete model. 
⚫ inconsistent models used descriptions that differed between working memory and rules, 

which must have been the same. 
⚫ misspelling used descriptions identical between working memory and rules, but the 

misspelling of a word prevented model functioning. 
⚫ inappropriate conditions prevented the right rule from triggering or caused a wrong rule to 

trigger due to incomplete conditions. 
⚫ missing rules did not create all five rules. 
 

3.3 Results and discussion  
 
We analyzed the data of seven out of the ten students who attended all three lectures and 
submitted all four models. Their models of the first to the third chapters were all complete. 
Among their models of the robot and banana problem, two were complete and five were 
incomplete. Figure 5 indicates the numbers of the failed and incomplete models that were 
added to each label of causes of failure. All five models had inappropriate conditions. As 
explained in Section 3.1, four of the five rules necessary to complete were given in natural 
language sentences, and each rule clearly presented two to four conditions. However, two 
students described fewer conditions in each rule for unclear reasons. They may have 
misunderstood the instruction, or there may have been other difficulties for novices in model 
construction.  

As described earlier, the current study preliminarily investigated the model construction 
by novice students. In this respect, the enhancement of support for model construction is 
necessary. 
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Figure 5. Numbers of the failed and incomplete models that were added to each 

cause-failure label. 
 

In the second worksheet, students’ answers included certain important concepts, such 
as ambiguous and indefinite for human strength, and unconscious and difficult to externalize 
thought for learning from model construction. While this study had only small samples, it may 
insist the possibility that model construction can foster awareness of the nature of human 
thought, which can lead to the understanding of the nature of human intelligence in problem 
solving. Of course, further investigation to verify the learning effects is necessary. Another 
important future work is to design further materials to expand what students learn about 
human intelligence. 
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