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Abstract: As education becomes increasingly digitized, organizing digital learning
materials into curriculum-based units is essential but often burdensome for educators.
This study proposes an automatic method for labeling mathematics problems in PDF
format using large language models (LLMs) and curriculum keywords. Using OpenAl’s
04-mini, we extracted text from MEXT-approved junior high school textbooks and
exercise books with high accuracy (98.9% and 99.7%). Unit labels were then assigned
by combining keyword-based filtering with embedding similarity (text-embedding-3-
small). Compared with a baseline without keyword filtering, expert evaluation favored
the keyword-based method (183 vs. 132 cases), confirming that keywords enhance
classification accuracy. These results demonstrate that LLM-based extraction is
practical for classroom use, requiring only minor manual corrections, and that unit-
specific vocabulary contributes to accurate hierarchical labeling. Future work will
extend this framework toward content management of LLM-generated materials and
unified log analysis to promote personalized learning pathways.
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1. Introduction

Within digital learning environments, there is an emerging focus on analyzing learning
behaviors by labeling educational content with unit information. This approach is particularly
valuable in mathematics education (Hussein, 2023), as unit labeling supports both learners
and educators by enabling systems to provide tailored assistance based on content and
learner data (Vovides et al., 2007). Previous studies have shown that associating unit labels
with PDF learning content can help reveal patterns in learning activities (Wang et al., 2022).
In parallel, research in knowledge tracing has demonstrated that regression and classification
models can estimate learners’ knowledge levels from sparse log data, effectively incorporating
multiple knowledge elements and skill dimensions (Vie & Kashima, 2019; Wang et al., 2023).

Further, visualizing the relationships among topics can enhance the consistency of
assessments and provide meaningful feedback to learners (Khosravi & Cooper, 2018). The
classification of exercises has also been shown to be beneficial in recommending tasks that
strengthen conceptual understanding, with evidence suggesting that students prefer
recommendations that include explanatory components (Yamauchi et al., 2024). Other work
has emphasized the value of unit-tree structures in making personalized education systems
more transparent (Sosnovsky & Brusilovsky, 2015), as well as the importance of
recommendation systems that support students in selecting suitable content based on both
difficulty and individual preferences (Christudas et al., 2018). Research has also explored the
extraction of units from learning materials to construct knowledge-structure representations,
which can increase learners’ awareness of their educational trajectory (Flanagan et al., 2019).

To conduct advanced analyses of student and teacher logs, learning materials must
be classified into curriculum knowledge units. However, such unit information is often absent



from the content itself, and manual annotation imposes a heavy workload on educators
(Flanagan et al., 2023; Schubotz et al., 2020). This has driven growing demand for automatic
labeling methods. While automatic unit labeling has been shown to reduce the burden on
experts (Schubotz et al., 2020), further advances are required to improve accuracy in order to
make such systems practical.

Although prior research demonstrated that mathematical formulas can be reliably
processed from well-structured PDF files (Date & Isozaki, 2015), challenges remain when
dealing with the diverse formats of user-uploaded PDFs. In these cases, information extraction
often yields incomplete results (Abekawa & Aizawa, 2016), which complicates the
implementation of automatic unit-labeling systems in educational contexts. To address this,
Yamauchi et al. (2023) proposed an n-gram-based labeling method that achieved strong
performance, even surpassing embedding models, for short and incomplete texts. In addition,
Yamauchi et al. (2025) showed that perceptron models with bigram features performed well
across diverse mathematics learning materials, demonstrating the potential of lightweight text-
based methods for automatic unit labeling.

Recent advances in large language models (LLMs) have significantly improved the
accuracy of text extraction. Alongside this progress, embedding techniques that capture
contextual meaning, beyond strict string matching, have become feasible for analyzing
educational texts. There is also research showing that using keywords improves labeling
accuracy (Flanagan et al., 2023), but there is room for verification as to whether this is effective
using LLM technology. In this study, we propose a method that leverages LLMs for extracting
mathematical text from PDF exercise materials and applies keyword-based unit labeling to
systematically organize the extracted problems.

RQ1: Can LLM-based methods accurately extract text from diverse mathematics materials?
RQ2: Does combining keyword information with LLM embeddings improve labeling accuracy
compared to embeddings alone?

2. Method and Result
2.1 Task description

The task in this study is to label mathematics problems stored in PDF format with a hierarchical
structure consisting of a main unit, sub unit, and subsub unit. This involves two main steps:
(1) extracting mathematical text from the PDF files, and (2) comparing the extracted text with
the corresponding content in the reference textbook to assign the appropriate hierarchical
labels.

2.2 Data Preparation

This study utilized three types of resources: Japanese junior high school (7th-9th grade)
mathematics textbooks, exercise books, and a keywords list. The textbook used in this study
was a Ministry of Education, Culture, Sports, Science and Technology (MEXT) approved
Japanese mathematics textbook. The PDF version of the textbook contained 625 pages and
was organized into a hierarchical structure consisting of 22 main units, 55 sub units, and 109
subsub units. The exercise book was also based on a MEXT-approved textbook; however, it
was not the same textbook as the one used in this study. This choice was motivated by the
fact that some schools adopt a combination in which the exercise book corresponds to a
different MEXT-approved textbook than the main textbook used in class. Due to this
difference, the hierarchical structure of the units in the exercise book does not perfectly align
with that of the main textbook. The PDF version of the exercise book consisted of 1,769 pages.
The keywords list was derived from the “Multilingual Junior High School Mathematics
Glossary” (https://www.mext.go.jp/a_menu/shotou/clarinet/003/001/011/003.htm) published
by MEXT. This glossary comprehensively covers all terminology used in junior high school
mathematics. A total of 738 keywords were obtained from the glossary.




2.3 Extraction of mathematical text

To extract text from the mathematics textbooks and exercise books, we employed a LLM
based prompting approach. Specifically, we used o4-mini, a member of OpenAl’s o-series
models. The o-series models are capable of reasoning and can perform a wide range of tasks
with relatively high accuracy; however, among these, only the 04-series supports image input.
Considering cost efficiency, o4-mini was selected for this study.

The text extraction algorithm is summarized in Table 1. First, each page of the PDF
files was converted into high-resolution (450 dpi) JPEG images. For use as input to the LLM,
these images were then converted into Base64-encoded strings and fed into the model.

Because both the textbooks and exercise books often contain diagrams, we designed
separate prompts for extracting the main text and for extracting the images, as outlined in
Table 2. The prompts were refined iteratively based on insights gained during preliminary
extraction trials. For example, since fractional expressions were often extracted inaccurately,
specific instructions on how to extract fractions were added to the prompts. Additionally, the
model frequently returned “This page cannot be extracted” without performing extraction. By
modifying the prompt to include the instruction “If extraction is not possible, please add the
reason,” the model unexpectedly began to produce extractions rather than refusal messages,
which is a notable and interesting behavioral change. This final version of the prompt was
adopted in our extraction pipeline.

Across the dataset, text was successfully extracted from 618 of 625 textbook pages
(98.9%) and 1,763 of 1,769 exercise-book pages (99.7%).

Table 1. Algorithm of extracting math text from PDF file

Algorithm
Convert each PDF to images (JPEG) at 450 dpi and save them in the image_file folder.
Process the JPEG files in image_file in name order:
Base64-encode the image.
Run the prompt 1 (in Table 2) to extract text and record both the raw result and a formatted
version.
Run the prompt 2 (in Table 2) to extract figure information and record both the raw result and
a formatted version.
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Table 2. Prompt for extraction of math text and image

Prompt

Your task is to extract the text contained in the image and output it as text.

The following image contains a math problem and its solution. Please output the text that
appears in this image.

- For the solution process, output exactly the characters written in the image.

- Write mathematical expressions in MathJax format, using the notation conventions used in
MathJax for mathematical symbols.

- Write fractions explicitly. For example, write \frac{{1}}{{4}} instead of \frac14, and
write \frac{{1}}{{2}}x"2 instead of \fracl2x"2.

- No markdown is needed.

- If you cannot extract all of the characters, output only the characters you were able to
extract.

- If you cannot output the text contained in the image at all, explain why it cannot be done.

Your task is to output a textual description of the figure contained in the image.

The following image contains a math problem and its solution. Please output the text that
appears in this image.

- You must provide an appropriate and uniquely determined description.

- Output all information necessary to reproduce the figure, such as side lengths, coordinates,
etc.

- Write mathematical expressions in MathJax format.

- Write fractions explicitly. For example, write \frac{{1}}{{4}} instead of \frac14, and
write \frac{{1}}{{2}}x"2instead of \frac12x"2.




- No markdown is needed.
- If you cannot provide an output, explain why it cannot be done.
- Do not transcribe sentences; describe only the figure.

2.4 Calculation of keyword tf-idf

From the textbook text data, all keywords contained in the glossary were extracted by exact
string matching. For each main unit, the corresponding block of text was then represented
using a TF—IDF vectorizer, which generated vectorized representations with respect to the
occurrence of each keyword.

As a result, 453 keywords appeared in at least one text segment. Among them, 158 keywords
were unique to a single main unit. This finding indicates that the mathematics teaching
materials contain multiple unit-specific terms, suggesting that certain vocabulary items are
strongly characteristic of individual main units.

2.5 Extraction of mathematical text

The overall algorithm is summarized in Table 3. First, candidate main units were identified by
matching the extracted text with the predefined keywords. Subsequently, sub units and subsub
units were determined by calculating the cosine similarity between the text of each textbook
page and the corresponding unit texts.

For vectorization of each page, we employed OpenAl’s text-embedding-3-small model
via the API. This embedding method was chosen because it enables fast transformation of
text into vector representations while capturing not only lexical overlap but also contextual
similarity, thereby improving the accuracy of unit assignment.

Table 3. Algorithm of unit labeling to math texts

Algorithm
# Step 1: Main unit candidates from keywords
if exercise has keywords:
match keywords to TF-IDF matrix
score each main unit
max_score <- max score among all main units
candidates <- units with score > 0.75 x max_score
# Step 2: Main unit selection by similarity
reference_data <- reference_data with main_unit in candidates
compare exercise vector with reference_data (cosine similarity)
group similarities by main_unit
take median of top 3 similarities for each unit
max_median <- max median among all main units
estimated_units <- units with median > 0.95 x max_median
# Step 3: Subunit selection for each main unit
for each main unit in estimated_units:
group similarities by sub_unit
take median of top 3 similarities for each unit
max_median <- max median among all main units
estimated_subunits <- subunits with median > 0.95 x max_median
# Step 4: Subsubunit selection for each subunit
for each main unit in estimated_subunits:
group similarities by subsub_unit
max_median <- max median among all main units
estimated_subsubunit <- one subsubunit with max_median
estimeted_subunit <- subunit with estimated_subsubunit
estimeted_unit <- unit with estimated_subunit
return estimated_unit, estimated subunit, estimated subsubunit
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2.6 Comparison and Evaliation

To evaluate the contribution of keywords to unit assignment accuracy, we compared the
algorithm described in Table 3 with a variant that omitted Step 1, i.e., the narrowing of
candidate main units by keyword matching. Between the two methods, differences in assigned
units were observed for 315 out of 1,769 exercise-book pages. These pages were then
annotated by a mathematics education expert, who determined which assignment was more
appropriate for each case. The results showed that the keyword-based method was judged
more appropriate in 183 cases, while the non-keyword method was preferred in 132 cases.
This outcome indicates that incorporating keywords into the algorithm improves the accuracy
of unit assignment.

3. Discussion and Limitations

Although prior research demonstrated that mathematical formulas can be reliably processed
from well-structured PDF files (Date & Isozaki, 2015), challenges remain when dealing with
the diverse formats of user-uploaded PDFs. In such cases, information extraction often
produces incomplete results (Abekawa & Aizawa, 2016), which complicates the
implementation of automatic unit-labeling systems in educational contexts. Moreover, to
conduct advanced analyses of student and teacher logs, learning materials must be classified
into curriculum knowledge units. However, unit information is often not embedded within the
content itself, and manual annotation imposes a substantial workload on educators (Flanagan
et al., 2023; Schubotz et al., 2020).

In this study, LLM-based methods achieved high extraction accuracy: 618 of 625
textbook pages (98.9%) and 1,763 of 1,769 exercise-book pages (99.7%) were successfully
processed. Since the materials analyzed are those actually used in schools, this result implies
that teachers would only need to manually revise approximately ten pages among thousands,
making the system sufficiently practical for classroom use. With regard to labeling,
incorporating keywords into the embedding-based approach yielded higher accuracy than
embeddings alone. This improvement can be attributed to the presence of unit-specific
keywords, which effectively contributed to the identification of main units.

Nevertheless, certain limitations must be acknowledged. Annotation was conducted by
a single domain expert, and cases where both models produced the same prediction were not
independently verified for correctness. These factors highlight important directions for future
work, including multi-expert validation and broader evaluation of unit-labeling reliability.

4. Conclusion

This study proposes an automatic method for labeling mathematics problems in PDF format
using LLMs and curriculum-based keywords. Applying o4-mini, we extracted text from junior
high school textbooks and exercise books with high accuracy (98.9% and 99.7%). Unit labels
were then assigned using keyword-based filtering and embedding similarity, with expert
evaluation showing that incorporating keywords improved accuracy.

In the future, the system of this research can develop a content-management layer
that curates, versions, and audits LLM-generated learning materials (Xing et al., 2025). In
parallel, it can also unify learning logs across heterogeneous resources into a single, unit-
aware record, enabling models to predict unit-level knowledge gaps for each learner and to
drive more effective personalized sequencing, recommendations, and formative assessment
(Takii et al., 2025).
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