Jiang, B. et al. (Eds.) (2025). Proceedings of the 33" International Conference on Computers in Education. Asia-
Pacific Society for Computers in Education

Educational Robotics through Web
Applications: From Visual Programming to

Simulation-Driven Learning

Ivan TERZIC®, Ivica BOTICKI?, Matija LOVREKOVIC? & Lara TOPALOVIC?
aFaculty of Electrical Engineering and Computing, University of Zagreb, Croatia
*ivan.terzic@fer.hr

Abstract: This paper explores the role of educational web applications in supporting
robotics-based learning, with a primary focus on how such tools can enhance early
STEM education. Based on two implementations developed within the MetaRobolLearn
project, the paper compares and analyzes two different approaches: one utilizing block-
based programming through the Blockly library, and the other using Python-based code
editing with an integrated 3D simulator. While both applications control physical and
simulated robots, their target audiences and pedagogical strategies differ significantly.
The block-based system is tailored for primary school students and emphasizes
simplicity, modularity, and abstraction of syntax. The Python-based system, on the
other hand, introduces students to real code structures and debugging practices in a
controlled, interactive environment. Both systems include simulation environments that
allow for experimentation without direct access to hardware, increasing accessibility
and safety. The paper argues that such hybrid learning environments — combining
visual programming, real-time simulation, and physical interaction — provide a scalable
and engaging framework for developing algorithmic thinking, problem-solving skills,
and interest in computer science among young learners.

Keywords: educational robotics; visual programming; Python programming; web-
based simulation; ROS2; Blockly; sim-to-real learning; hybrid robotics platforms

1. Introduction

Robotics has emerged as a powerful medium for engaging students in STEM disciplines by
blending mechanical systems, coding, and real-world logic into tangible learning experiences.
However, widespread adoption of robotics in education is often hindered by hardware costs,
classroom complexity, and a steep learning curve for programming. To address these
challenges, web-based educational applications have become increasingly popular, offering
accessible, flexible, and scalable learning environments.

This paper presents two complementary web applications developed within the
MetaRoboLearn project. Both systems enable students to program and control robots through
their browsers, with support for virtual and physical execution. The first application features a
visual block-based interface suitable for younger learners, while the second provides a text-
based Python coding environment aimed at more advanced users. Both platforms integrate
with a 3D web simulator and can also connect to a ROS2-enabled physical robot, allowing
users to transition seamlessly between simulation and real-world testing.

The designed technology ecosystem is primarily intended for use in primary and
secondary STEM education, where students have diverse levels of prior programming
experience. In early primary school settings, the block-based Blockly environment enables
learners to construct robot programs without worrying about syntax, supporting inclusive
participation and early exposure to algorithmic thinking. In lower and upper secondary
education, the Python-based application provides a bridge toward more advanced
computational practices, enabling students to work with structured code, debugging, and
problem decomposition. Both tools can be flexibly integrated into classroom lessons,
extracurricular robotics clubs, or teacher-led workshops, and support collaborative learning
where groups of mixed-ability students solve similar tasks using different interfaces.



The following sections detail the pedagogical context, system architecture, individual
applications, and their educational implications. By analyzing these tools side-by-side, the
paper explores how hybrid web environments can support progressive learning in robotics,
from visual abstraction to structured coding, within a unified technical ecosystem.

2. Related work

Educational robotics (ER) is increasingly recognized as an effective pedagogical approach
that supports learning through hands-on engagement with physical and virtual robots. It
promotes the development of computational thinking, problem-solving, and collaborative skills,
particularly within STEM education (Mikropoulos & Bellou, 2013; Zhong & Xia, 2020).
Numerous empirical studies have shown that ER can enhance student achievement,
motivation, and confidence, especially when integrated into game-based or collaborative
activities (Chen et al., 2023; Ouyang & Xu, 2024). A key distinction in ER lies between physical
and virtual robotic systems. Physical platforms, such as LEGO Mindstorms or Arduino Kkits,
offer direct interaction with hardware and, allowing students to experience real-world
constraints and feedback (Garcia-Tudela & Marin-Marin, 2023; Gonzalez-Garcia et al., 2020).
These systems often enable both basic command execution and more advanced
programmable control using custom code or libraries. However, they also present barriers
such as higher cost, setup complexity, and limited scalability in classroom environments.

To address these challenges, virtual environments have gained prominence. Platforms
like Gazebo, Open Roberta Lab, and Unity-based simulators offer simulated robot control
without the need for physical hardware (Tselegkaridis & Sapounidis, 2021). Although these
environments lack the tactile experience of hardware interaction, they reduce logistical
constraints and allow for repeated experimentation and safe failure — key principles of
exploratory learning (Su et al., 2021). Within these educational contexts, block-based
programming has emerged as a powerful method for lowering the entry barrier to coding. Tools
like Scratch and Blockly use visual metaphors, such as snapping together blocks, to teach
programming logic without requiring knowledge of syntax (Maloney et al., 2010). Block-based
interfaces have been shown to improve students’ algorithmic thinking and provide a more
inclusive environment, especially for younger learners or those with limited prior exposure to
technology (Tarrés-Puertas et al., 2023). ROS2 has become a widely adopted framework in
educational robotics due to its modularity, real-time communication, and support for sim-to-
real transfer. Platforms like NVIDIA Isaac Sim allow students to test ROS2 nodes in realistic
virtual environments and then deploy the same code on physical robots powered by hardware
such as the Jetson Orin Nano. This architecture ensures consistency across platforms and
supports advanced Al features, including object detection and voice control, making it suitable
for scalable, modern educational use (Bonci et al., 2023; Salimpour et al., 2025).

The applications analyzed in this paper reflect these pedagogical principles. One system
uses a Blockly-based interface to allow students to generate code from drag-and-drop
elements, which can then be executed on both a simulator and a physical robot. The second
application introduces textual Python coding through a web-based editor, supported by syntax
highlighting. By combining simulation, physical interaction, and both block-based and text-
based programming paradigms, these tools provide a flexible and scalable framework for
robotics education that aligns with the evolving technological and pedagogical landscape.

3. System Architecture and Robot Platform

The educational platform centers on a mobile robot designed for both simulation and real-
world use, with ROS2 serving as the middleware for modular, real-time communication
between software and hardware components. At the hardware level, the robot includes
motors, different sensors and an RGB camera. The processing unit is the NVIDIA Jetson Orin
Nano. Closed-loop motor control is achieved using a PID controller, and sensor data is



published via ROS2 topics for consumption by other nodes or external applications. The robot
exposes lower-level velocity control interfaces through ROS2 services and topics. Higher-level
commands, such as “move forward for 2 seconds” are programmatically abstracted for
educational purposes. This abstraction enables the integration of external user-facing
applications, such as block-based or Python-based programming environments, where
students can send structured commands to the robot without interacting directly with its
hardware APlIs.

A key strength of the platform is its dual simulation capability. While tools like NVIDIA
Isaac Sim have been explored for high-fidelity robotic simulation, including Al-in-the-loop
workflows and ROS2 compatibility, the primary focus of this paper is on web-based simulation
environments developed specifically for educational use. These custom web simulators
provide an accessible 3D interface directly in the browser without requiring installation or GPU
acceleration. They replicate the robot's movement logic and are integrated with the
educational applications described in subsequent sections and are, as opposed to the NVIDIA
Isaac Sim, much less resource-intensive to run. Isaac Sim is used to replicate physical robots,
while the web application simulator is designed exclusively for validating the logic of robot
movements. Communication between the web simulator and the backend is abstracted to
match the ROS2 data flow, enabling code reuse and conceptual consistency. Students can
write and test code in the simulators and then seamlessly transfer it to a physical robot if
available. The system architecture is shown in Figure 1. By combining ROS2, modular
hardware, and web-native simulation, the system provides a scalable and approachable entry
point into robotics education — bridging the gap between simulation, code, and real-world

execution.
% |

Isaac Sim simulation

Systems interface G—) ROS2 Interface

services

N

Block or Python programming app

Physical robot

Figure 1. System architecture

4. Visual Programming with Blockly

The first developed application is a browser-based programming environment that enables
users to control a robot through a visual block-based interface. It is built using Google’s Blockly
library and tailored specifically for robotics control via a set of custom logic blocks. These
blocks abstract common robotic commands such as movement, turning, waiting, and sensor
interaction, providing a simple and accessible user experience for executing structured tasks.
The interface consists of two main components: a block workspace (users construct programs
by arranging graphical blocks into logical sequences) and a simplified simulator — designed
as a quick way to check the logic of a created program without the need to connect to a ROS2
interface.

Each user action is compiled into Python instructions that follow a predefined command
format. These include high-level commands such as move_forward(time, speed) or turn(time,
speed). The communication between the Blockly frontend and the server is handled over
HTTP and WebSocket protocols, ensuring responsiveness during execution and real-time
feedback. The robot platform supports synchronous and asynchronous commands, allowing
for both simple and complex behaviors to be constructed.

The code is validated on the server side and executed. The server interfaces with two
possible execution environments: a 3D simulator, integrated in the app, for immediate



feedback or a ROS2 interface, which represents either the Isaac Sim or a physical robot for
real-world testing and deployment. This architecture allows for seamless switching between
virtual and physical modes, without requiring the user to change their code or configuration.
When connected to a real robot, the application also provides a tab for previewing the live
stream from the robot’s camera. The application interface is shown in Figure 2.

This application is designed to be modular, extensible, and platform independent. New
blocks can be added via a JSON-based definition system, allowing for easy customization. All
communication is encapsulated and abstracted to match ROS2 message structures, making
the same codebase executable on both simulated and real hardware.

5. Python-Based Robot Programming

The second application is a browser-based Python programming environment that allows
users to write and execute custom code to control a mobile robot. It features a lightweight web
interface providing essential programming features such as syntax highlighting, indentation
support, and error hints. The environment exposes a simplified API for robotic control, allowing
users to issue commands like move_forward(time, speed) or turn(time, speed) directly in
Python, integrated as functions in regular Python code.

The user interface consists of a text editor and a built-in 3D simulator panel. Unlike the
Blockly application, this interface requires users to understand code structure and logic,
enabling more flexible and precise program design. Upon execution, the written Python script
is sent to the backend via HTTP, where it is validated and parsed. Each command is
processed through a sandboxed Python runtime and then translated into executable
instructions.

Other aspects of the application, such as server-side validation and possible execution
environments are identical to the Blockly app, ensuring scalability and platform independence.
The API is modular, and new functions can be added with minimal effort. Communication
patterns mirror those used in real ROS2 systems, allowing learners to transition toward native
ROS2 development environments without needing to relearn foundational concepts.

Figure 2 shows an equivalent robot program implemented in both applications. While
Blockly lowers the entry barrier by abstracting syntax, Python allows learners to engage

directly with structured code, supporting progression from visual to text-based programming.
E&% MetaRoboLearn ';;BJ' Matakoholsam

LEVEL : BEGINNER

3 tur 4
4 forward(1,29)

Figure 2. Equivalent robot program implementedmin Python (left) and Blockly (right).

6. Discussion

The Blockly and Python-based applications represent two complementary approaches to
programming and robotics education. Technically, both systems integrate with the same
execution infrastructure, allowing the code to be tested in a 3D browser-based simulator or
on a physical robot. This sim-to-real consistency encourages experimentation in a safe
environment before transitioning to hardware, reinforcing the practical connection between
abstract code and tangible behavior — an approach that (Gonzalez-Garcia et al., 2020)
demonstrated as effective for knowledge transfer, though their work focused on single
programming environments rather than integrated multi-interface systems. While both



discussed applications operate on the same robot platform and share a unified backend and
simulation framework, their user interfaces, target audiences, and pedagogical impact differ.
Figure 3 depicts the same example being tested in real life and in the simulation and
illustrates the sim-to-real consistency enabled by the shared ROS2 backend, allowing
students to experiment safely in simulation before deploying code on hardware.

il i

Figure 3. Execution of the same task with the physical robot (left) and in the simulation
environment (right).

The Blockly-based application is designed as an entry point for novice users,
particularly in primary and lower secondary education. It uses a visual, block-based interface
to abstract away syntax and low-level details. Users create programs by combining
predefined logical units, which are then translated into executable Python code behind the
scenes. This structure makes it ideal for early learners or students without prior
programming experience, building upon principles established by (Maloney et al., 2010) in
Scratch, though extending beyond their single-environment approach to enable seamless
progression to text-based programming.

In contrast, the Python-based application is targeted toward older or more advanced
students who are ready to transition from visual programming to text-based scripting. It offers
full access to Python syntax, supports conditional logic, loops, and variable handling, and
introduces the structure of real-world robotics programming. The underlying command API is
shared with the Blockly environment, ensuring continuity in learning.

The inclusion of simulation ensures that students can engage with robotics regardless
of hardware availability, responding to accessibility barriers documented by (Tselegkaridis &
Sapounidis, 2021). The 3D web-based simulator, tightly integrated into both applications,
provides real-time visual feedback and reinforces the connection between code and motion.
This supports iterative experimentation, a core principle of constructionist learning. The
platform supports differentiated instruction, addressing calls by (Stasolla et al., 2025) for more
inclusive educational robotics approaches. Educators can tailor lessons to student readiness
by choosing the appropriate interface. In mixed-ability classrooms, some students may work
in Blockly while others tackle the same task in Python, all within the same robotic framework
— implementing the collaborative learning across skill levels that (Ouyang & Xu, 2024)
identified as beneficial but noted was rarely implemented in existing platforms.

The current conceptualization of the ecosystem makes several assumptions and faces
certain constraints. First, while the simulator enhances accessibility, classroom use of the
physical robot still depends on hardware availability and associated costs. Second, the
approach assumes stable internet connectivity and access to modern web browsers, which
may limit adoption in resource-constrained educational contexts. Third, the progression model
assumes that learners can transition smoothly from Blockly to Python; however, this pathway
may not fit all students equally, and additional scaffolding may be required. Finally, the web
simulator is intentionally lightweight and does not replicate all physical dynamics of the real
robot, which may lead to differences in task execution between simulation and reality. These
limitations provide directions for future refinements.

7. Conclusions



This work presented two robot control applications with a block-based environment and a
Python-based coding interface. Both systems share a unified execution backend and support
deployment on a ROS2 interface (either a physical or a virtual robot simulated in Isaac Sim)
or in an integrated browser-based simulator. This architecture ensures a consistent
programming experience across interfaces and promotes a seamless transition from visual to
text-based coding. By abstracting robot control through a simplified APl and enabling real-time
feedback via simulation, the platform accommodates a wide range of learners and instructional
settings. The use of ROS2 as the middleware enables compatibility with modern robotics tools
and supports future system expansion. Future work will focus on extending the Python API to
include advanced sensor integration, expanding the Blockly command set, and improving
simulation fidelity. Additional plans include integrating student progress tracking, supporting
classroom orchestration tools, and exploring adaptive learning features. The platform also lays
the foundation for more advanced topics, including Al and machine learning in robotics
education. Through its modular design and accessibility, the system offers a scalable solution
for introducing students to robotics in both virtual and physical environments.

References

Bonci, A., Gaudeni, F., Giannini, M. C., & Longhi, S. (2023). Robot Operating System 2 (ROS2)-
Based Frameworks for Increasing Robot Autonomy: A Survey. Applied Sciences, 13(23), Article
23. https://doi.org/10.3390/app132312796

Chen, T.-I, Lin, S.-K., & Chung, H.-C. (2023). Gamified Educational Robots Lead an Increase in
Motivation and Creativity in STEM Education. Journal of Baltic Science Education, 22(3), 427—
438. https://eric.ed.gov/?id=EJ1382842

Garcia-Tudela, P. A., & Marin-Marin, J.-A. (2023). Use of Arduino in Primary Education: A Systematic
Review. Education Sciences, 13(2), Article 2. https://doi.org/10.3390/educsci13020134

Gonzélez-Garcia, S., Rodriguez-Arce, J., Loreto-Gémez, G., & Montafio-Serrano, V. M. (2020).
Teaching forward kinematics in a robotics course using simulations: Transfer to a real-world
context using LEGO mindstorms™. International Journal on Interactive Design and
Manufacturing (IJIDeM), 14(3), 773-787. https://doi.org/10.1007/s12008-020-00670-z

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch Programming
Language and Environment. ACM Trans. Comput. Educ., 10(4), 16:1-16:15.
https://doi.org/10.1145/1868358.1868363

Mikropoulos, T. A., & Bellou, I. (2013). Educational Robotics as Mindtools. Themes in Science and
Technology Education, 6(1), 5—14. https://eric.ed.gov/?id=EJ1130925

Ouyang, F., & Xu, W. (2024). The effects of educational robotics in STEM education: A multilevel
meta-analysis. International Journal of STEM Education, 11(1), 7.
https://doi.org/10.1186/s40594-024-00469-4

Salimpour, S., Pefa-Queralta, J., Paez-Granados, D., Heikkonen, J., & Westerlund, T. (2025). Sim-to-
Real Transfer for Mobile Robots with Reinforcement Learning: From NVIDIA Isaac Sim to
Gazebo and Real ROS 2 Robots (No. arXiv:2501.02902). arXiv.
https://doi.org/10.48550/arXiv.2501.02902

Stasolla, F., Curcio, E., Borgese, A., Passaro, A., Di Gioia, M., Zullo, A., & Martini, E. (2025).
Educational Robotics and Game-Based Interventions for Overcoming Dyscalculia: A Pilot Study.
Computers, 14(5), Article 5. https://doi.org/10.3390/computers14050201

Sy, L., Qiu, G., Tang, W., & Chen, M. (2021). A ROS Based Open Source Simulation Environment for
Robotics Beginners. 2021 6th International Conference on Robotics and Automation Engineering
(ICRAE), 286—291. https://doi.org/10.1109/ICRAE53653.2021.9657761

Tarrés-Puertas, M. |., Costa, V., Pedreira Alvarez, M., Lemkow-Tovias, G., Rossell, J. M., & Dorado,
A. D. (2023). Child—Robot Interactions Using Educational Robots: An Ethical and Inclusive
Perspective. Sensors, 23(3), Article 3. https://doi.org/10.3390/s23031675

Tselegkaridis, S., & Sapounidis, T. (2021). Simulators in Educational Robotics: A Review. Education
Sciences, 11(1), Article 1. https://doi.org/10.3390/educsci11010011

Zhong, B., & Xia, L. (2020). A Systematic Review on Exploring the Potential of Educational Robotics
in Mathematics Education. International Journal of Science and Mathematics Education, 18(1),
79—-101. https://doi.org/10.1007/s10763-018-09939-y



