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Abstract: This article explores the privacy challenges posed by artificial intelligence in 
embodied robotic systems and proposes technical, design, and governance 
responses. Robots generate raw sensor data and derived inferences, creating 
distinctive risks in human–robot interaction such as incidental capture, inferential 
leakage, algorithmic bias, and third-party exposure. Existing consent models and legal 
frameworks (GDPR, CCPA, EU AI Act) provide only partial protection, especially in 
contexts where robots operate persistently and without meaningful choice for users or 
bystanders. A classroom case study illustrates these concerns, showing how 
educational robots can expose children and teachers to privacy harms while also 
pointing to mitigation strategies, including privacy-by-design, transparency indicators, 
configurable controls, and privacy-enhancing technologies like edge AI and federated 
learning. The discussion emphasizes interdisciplinary collaboration, participatory 
deployment, and privacy impact assessment. The article concludes that embedding 
dignity and digital self-determination into system design and governance is essential 
for aligning innovation with accountability and trust. 
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1. Introduction – Embodied Privacy Risks 
 
The rapid development of robotics is creating new opportunities across various fields, 
including education, healthcare, logistics, and domestic life (Henschel et al., 2021; Morgan et 
al., 2022; Ouyang & Xu, 2024). Unlike traditional digital technologies such as laptops and 
smartphones, which require deliberate user interaction, robots are embodied agents 
comprised of sensors and actuators that are capable of sensing, moving, and acting within the 
physical environment to accomplish a set of tasks. This embodiment introduces distinct 
privacy challenges, as robots collect and process data about individuals and their 
surroundings, often without explicit or conscious consent (Lin et al., 2011). 

Artificial intelligence (AI) is a branch of computer science focused on creating systems 
that mimic human abilities such as learning, reasoning, and decision-making (Norvig & 
Intelligence, 2002). Unlike rule-based software, AI is data-driven and adaptive, making it 
effective in dynamic settings but also raising concerns about transparency, fairness, and 
accountability (Radanliev, 2025; Samana, 2023). The integration of AI into robotics amplifies 
both opportunity and risk, with privacy emerging as a central concern. The learning and 
adaptive capacities of AI-enabled robots magnify privacy risks. For example, model training 
may expose training membership through inference attacks, such as membership inference 
(Shokri et al., 2017), while model architectures themselves may leak sensitive attributes even 
under trusted conditions (Mireshghallah et al., 2020). 

Contemporary data‑protection regimes, notably the EU General Data Protection 
Regulation (GDPR, 2016) and the California Consumer Privacy Act (CCPA, 2020), provide 
important legal baselines but frequently struggle to keep pace with rapidly evolving AI‑robotics 
capabilities. These regulatory gaps blur liability, accountability, and consent, especially in high-
stakes contexts like remote surgery, autonomous decisions, or safety-critical interventions 
where tracing errors or data misuse is complex. Addressing them requires coordinated 
technical, legal, and ethical measures. 



2. Data Collection in Robotics 
 
Robotic platforms employ diverse sensors—cameras, microphones, LiDAR, infrared, and 
inertial units—that produce raw data (video, audio, depth maps, motion traces) and derived 
artefacts (maps, trajectories, behavioral profiles, biometric attributes) (Cadena et al., 2016; 
Siciliano & Khatib, 2016). These are essential for localization, mapping, perception, 
manipulation, and HRI (Lin et al., 2014; Thrun, 2002), but they raise privacy concerns beyond 
conventional information systems (Koops & Leenes, 2014). 

First, the boundary between minimal sensing (e.g., obstacle detection) and intrusive 
inference (e.g., facial recognition, gait or emotion analysis) is opaque to non-experts (Lee et 
al., 2011). Second, robots in public or multi-user settings capture data about bystanders 
without consent, implicating third-party rights (Dietrich et al., 2023). Third, many systems lack 
transparency about collection, processing, retention, and redress, weakening consent and 
fairness (Koops & Leenes, 2014; Richards & King, 2014). 

Taken together, robotic sensing expands both the scope of data and the capacity to infer 
sensitive attributes, amplifying ethical and regulatory challenges. Addressing these requires 
sensor-level design choices, data minimization, explainable pipelines, and governance 
mechanisms attuned to embodied sensing and mobility. 
 

2.1 User Control, Consent, and Transparency 
 
Traditional consent mechanisms are frequently ill‑suited to robotic contexts because robots 
are mobile, autonomous, and embedded within socio‑technical environments inhabited by 
multiple stakeholders. Robots can record people without their awareness, challenging 
informed consent and especially in classrooms, workplaces, and clinics where interaction may 
be unavoidable (Sharkey, 2016; van Wynsberghe et al., 2022). The asymmetry of knowledge 
and control between system operators, designers, and incidental subjects complicates 
attribution of consent and responsibility. 

Proposed mitigations emphasize both technical and procedural measures. At the 
technical level, persistent and unambiguous transparency cues such as visual, auditory, or 
haptic indicators that signal when cameras, microphones, or other sensors are active can 
improve bystander awareness and support situational trust. Complementary user controls that 
permit teachers, caregivers, or administrators to disable, limit, or configure sensing modalities 
provide practical mechanisms for restricting data collection in sensitive contexts. Crucially, 
transparency must encompass more than perceptual indicators: meaningful consent requires 
accessible disclosures about data flows, retention schedules, purposes of processing, and 
mechanisms for access, correction, and deletion. Without such explanatory and governance 
elements, passive notification is unlikely to translate into genuine agency for affected 
individuals (Richards & King, 2014; Westin, 2003). 
 

2.2 Privacy by Design and Negative Design 
 
Privacy‑by‑Design has gained broad endorsement in policy and scholarly discourse as a 
foundational principle for protecting personal data (Cavoukian, 2009). Applied to robotic 
systems, this principle requires that privacy safeguards be integrated into system architectures 
and development lifecycles rather than appended as post‑hoc fixes. Practical measures 

include privacy‑preserving default settings (e.g., conservative logging policies, sensor 
duty‑cycling), edge processing to keep sensitive data local, encrypted storage, and 

fine‑grained access controls that limit data exposure to only those modules or actors with a 
demonstrated need. 

Complementing affirmative design is the notion of negative design, which purposefully 
constrains robotic capabilities to prevent privacy harm. Negative-design strategies for 
embodied agents include context-aware suspension of sensing (e.g., geofenced “no-capture” 
zones and behaviors like turning away in bathrooms or clearly private interactions), aggressive 
data-minimization and storage-limitation (e.g., deletion of non-essential recordings), and hard 



defaults against sensitive inferences (e.g., facial recognition or affect-state inference disabled 
by default). These strategies are consistent with privacy-by-design/default obligations and with 
emerging legal limits on certain biometric/affective inferences, while aligning with contextual-
integrity’s emphasis on protecting dignity and autonomy in specific settings (GDPR, 2016; 
EDPB, Guidelines 4/2019, 2020; Schiff et al., 2007). 

 

2.3 Technical Safeguards: Privacy-Enhancing Technologies 
 
Building on privacy-centric design and negative-design constraints, privacy-enhancing 
technologies (PETs) provide concrete mechanisms to operationalize those principles in 
robotic systems. Edge AI (on-device processing) aligns with privacy-by-design by keeping raw 
sensor data local—reducing cloud dependence and exposure during transmission or 
centralized storage (Zhou et al., 2019). Federated learning allows multiple robots to improve 
a model collaboratively without sharing raw data, preserving individual privacy while 
supporting collective learning (McMahan et al., 2017). Differential privacy adds quantifiable 
protection by injecting calibrated noise into outputs or model updates so that contributions of 
any individual subject cannot be reverse-engineered (Abadi et al., 2016). Homomorphic 
encryption and secure aggregation further protect collaboration by enabling computation on 
encrypted data and privacy-preserving combination of model updates, respectively (Bonawitz 
et al., 2017; Gentry, 2009). In robotics, these PETs increasingly appear in privacy-preserving 
perception and mapping, e.g., SLAM/localization pipelines that restrict what is revealed or 
computed (Geppert et al., 2022; Shibuya et al., 2020). Taken together, PETs complement 
architectural measures (local processing, conservative defaults, negative design) by providing 
technical guarantees that limit data exposure, constrain inferential risks, and support 
compliance with data-minimization and privacy-by-design obligations. 
 

3. Case Study: Educational Robots in Classroom Settings 
 
The introduction of educational robots into classrooms provides a concrete example of how 
privacy concerns manifest in practice. Consider a mobile robot equipped with cameras and 
object detection algorithms, designed to teach students about robotics and machine learning, 
the platform simultaneously generates primary sensor outputs (video, audio, depth) and 
secondary inferences (face images, trajectories, interaction logs), each of which may implicate 
student privacy. 
 

3.1 Privacy risks and harms 
 
Privacy risks in classroom deployments arise along several dimensions. First, there is a well-
documented opacity for non-expert users between “minimally invasive” functions (such as 
proximity sensing for obstacle avoidance) and more intrusive inferences (e.g., facial 
recognition or affect estimation). This obscurity complicates contextual privacy judgments and 
informed assessment of risk in HRI (Lee et al., 2011; Serholt et al., 2017). Inference risks also 
include downstream repurposing of logs (movement, participation, social interaction) for 
profiling, a phenomenon emphasized in the data-ethics literature on big-data inference 
(Richards & King, 2014; Wachter & Mittelstadt, 2019). 
 Second, embodied sensing routinely captures bystanders and other third parties who 
have not provided meaningful consent; especially acute in classrooms where participation may 
be mandatory and power asymmetries are high (Serholt et al., 2017; Sharkey, 2016). This 
places a premium on transparency, default minimization, and child-specific safeguards 
recognized in EU data-protection doctrine (“GDPR Arts. 5 & 25,” n.d.). 
 Third, fairness and accuracy risks accompany computer-vision pipelines commonly 
used in educational robots. Large-scale evaluations show systematic performance disparities 
by demographic attributes in face analysis and detection (Buolamwini & Gebru, 2018; Wilson 
et al., 2019), raising the prospect of disproportionate harm to minoritized students via 
misclassification. Finally, security remains a persistent concern: robotics stacks and 
connected peripherals have exhibited exploitable vulnerabilities that enable eavesdropping or 



data exfiltration (Yaacoub et al., 2022). Recent cases with consumer “toy robots” show risks 
like unauthorized video chat, account takeovers, and children’s data leaks; threats that could 
extend to schools if similar components are used (Kaspersky, 2024). 
 

3.2 Technical and procedural mitigations 
 
A defensible posture combines privacy-by-design defaults with PETs. Edge processing keeps 
raw sensor data local, reducing exposure from transmission or cloud aggregation and aligning 
with GDPR’s data-minimization and “data protection by design and by default” obligations 
(“GDPR Arts. 5 & 25,” n.d.; EDPB, Guidelines 4/2019, 2020; Zhou et al., 2019). Where 
aggregate learning is needed across devices, federated learning avoids sharing raw data and 
has mature threat models and deployment patterns (Kairouz et al., 2021). For analytics that 
produce counts or models, differential privacy provides quantifiable protection against 
singling-out (Dwork & Roth, 2014). 
 When cameras are necessary, anonymization/obfuscation can lower identifiability: 
classical k-anonymity for tabular logs (Sweeney, 2002), automatic face blurring for video, and 
emerging privacy-preserving visual-SLAM/localization methods that conceal scene 
appearance by operating on line-cloud or transformed features instead of raw images 
(Geppert et al., 2022; Shibuya et al., 2020). Systems should expose configurable “privacy 
modes” to disable sensing or reduce sampling during sensitive activities, alongside persistent 
recording indicators and child-appropriate notices (Age Appropriate Design, 2025). 
 Retention and accountability measures matter as much as front-end minimization: 
default short retention with automatic deletion, purpose limitation, and auditable access-
logging are expected under GDPR principles and design-by-default guidance (“GDPR Art. 5,” 
n.d.; EDPB, Guidelines 4/2019, 2020). 
 

3.3 Legal and regulatory considerations 
 

Deployments in schools implicate heightened duties because minors’ data merit “specific 
protection” (“Recital 38 - GDPR,” n.d.). Controllers must identify a lawful basis, respect 
purpose limitation and minimization (“GDPR Art. 5,” n.d.), implement data protection by design 
and by default (“GDPR Art. 25,” n.d.), and conduct a Data Protection Impact Assessment 
where processing is likely high-risk—for example, systematic monitoring of publicly accessible 
areas. The EU AI Act also bans emotion-recognition systems in educational settings and 
tightens controls on certain biometric uses, clarifying boundaries for classroom AI. National 
practice varies: for example, New York State prohibits K-12 schools from using facial 
recognition, citing accuracy and civil-rights concerns—illustrating how local regulators may go 
beyond EU-level baselines in school contexts (NYSED, 2023). Beyond EU/US contexts, 
regulatory approaches can differ significantly—for instance, some Asia-Pacific jurisdictions 
emphasize data localization and state oversight, while others lack comprehensive protections, 
creating divergent expectations for educational deployments. 
 

4. Reflection & Conclusion 
 
Privacy in robotics extends beyond legal compliance to encompass dignity, autonomy, and 
digital self-determination. Robots operating in homes, classrooms, and clinics continuously 
sense, infer, and act, raising questions about how to protect vulnerable groups, whether 
robot-specific rules on consent and transparency are needed, and how social norms must 
adapt to persistent observation. Addressing these challenges demands interdisciplinary 
collaboration and participatory engagement, supported by technical safeguards (privacy-by-
design, PETs, negative design) and organizational measures such as procurement 
standards and training. Privacy should be evaluated not only in terms of compliance but also 
by its impact on autonomy. Viewing it as protection of the digital self reorients development 
toward human well-being, grounded in proportionality, accountability, and respect. 
Embedding these values increases the likelihood that social and educational robots 
empower rather than surveil. 



While robotic systems promise significant benefits, their embodied sensing and 
inferential capacities generate privacy risks that current regulations and design practices 
cannot fully address. Mitigation requires integrating privacy into system architectures, 
deploying safeguards such as edge processing and encryption, and strengthening 
governance through transparency, user control, and enforceable oversight. In education, 
privacy protections foster trust between students and institutions. They also support inclusivity 
and equity by ensuring all learners benefit without disproportionate risks. 
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