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Abstract: This article explores the privacy challenges posed by artificial intelligence in
embodied robotic systems and proposes technical, design, and governance
responses. Robots generate raw sensor data and derived inferences, creating
distinctive risks in human-robot interaction such as incidental capture, inferential
leakage, algorithmic bias, and third-party exposure. Existing consent models and legal
frameworks (GDPR, CCPA, EU Al Act) provide only partial protection, especially in
contexts where robots operate persistently and without meaningful choice for users or
bystanders. A classroom case study illustrates these concerns, showing how
educational robots can expose children and teachers to privacy harms while also
pointing to mitigation strategies, including privacy-by-design, transparency indicators,
configurable controls, and privacy-enhancing technologies like edge Al and federated
learning. The discussion emphasizes interdisciplinary collaboration, participatory
deployment, and privacy impact assessment. The article concludes that embedding
dignity and digital self-determination into system design and governance is essential
for aligning innovation with accountability and trust.
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1. Introduction — Embodied Privacy Risks

The rapid development of robotics is creating new opportunities across various fields,
including education, healthcare, logistics, and domestic life (Henschel et al., 2021; Morgan et
al., 2022; Ouyang & Xu, 2024). Unlike traditional digital technologies such as laptops and
smartphones, which require deliberate user interaction, robots are embodied agents
comprised of sensors and actuators that are capable of sensing, moving, and acting within the
physical environment to accomplish a set of tasks. This embodiment introduces distinct
privacy challenges, as robots collect and process data about individuals and their
surroundings, often without explicit or conscious consent (Lin et al., 2011).

Artificial intelligence (Al) is a branch of computer science focused on creating systems
that mimic human abilities such as learning, reasoning, and decision-making (Norvig &
Intelligence, 2002). Unlike rule-based software, Al is data-driven and adaptive, making it
effective in dynamic settings but also raising concerns about transparency, fairness, and
accountability (Radanliev, 2025; Samana, 2023). The integration of Al into robotics amplifies
both opportunity and risk, with privacy emerging as a central concern. The learning and
adaptive capacities of Al-enabled robots magnify privacy risks. For example, model training
may expose training membership through inference attacks, such as membership inference
(Shokri et al., 2017), while model architectures themselves may leak sensitive attributes even
under trusted conditions (Mireshghallah et al., 2020).

Contemporary data-protection regimes, notably the EU General Data Protection
Regulation (GDPR, 2016) and the California Consumer Privacy Act (CCPA, 2020), provide
important legal baselines but frequently struggle to keep pace with rapidly evolving Al-robotics
capabilities. These regulatory gaps blur liability, accountability, and consent, especially in high-
stakes contexts like remote surgery, autonomous decisions, or safety-critical interventions
where tracing errors or data misuse is complex. Addressing them requires coordinated
technical, legal, and ethical measures.



2. Data Collection in Robotics

Robotic platforms employ diverse sensors—cameras, microphones, LiDAR, infrared, and
inertial units—that produce raw data (video, audio, depth maps, motion traces) and derived
artefacts (maps, trajectories, behavioral profiles, biometric attributes) (Cadena et al., 2016;
Siciliano & Khatib, 2016). These are essential for localization, mapping, perception,
manipulation, and HRI (Lin et al., 2014; Thrun, 2002), but they raise privacy concerns beyond
conventional information systems (Koops & Leenes, 2014).

First, the boundary between minimal sensing (e.g., obstacle detection) and intrusive
inference (e.g., facial recognition, gait or emotion analysis) is opaque to non-experts (Lee et
al., 2011). Second, robots in public or multi-user settings capture data about bystanders
without consent, implicating third-party rights (Dietrich et al., 2023). Third, many systems lack
transparency about collection, processing, retention, and redress, weakening consent and
fairness (Koops & Leenes, 2014; Richards & King, 2014).

Taken together, robotic sensing expands both the scope of data and the capacity to infer
sensitive attributes, amplifying ethical and regulatory challenges. Addressing these requires
sensor-level design choices, data minimization, explainable pipelines, and governance
mechanisms attuned to embodied sensing and mobility.

2.1 User Control, Consent, and Transparency

Traditional consent mechanisms are frequently ill-suited to robotic contexts because robots
are mobile, autonomous, and embedded within socio-technical environments inhabited by
multiple stakeholders. Robots can record people without their awareness, challenging
informed consent and especially in classrooms, workplaces, and clinics where interaction may
be unavoidable (Sharkey, 2016; van Wynsberghe et al., 2022). The asymmetry of knowledge
and control between system operators, designers, and incidental subjects complicates
attribution of consent and responsibility.

Proposed mitigations emphasize both technical and procedural measures. At the
technical level, persistent and unambiguous transparency cues such as visual, auditory, or
haptic indicators that signal when cameras, microphones, or other sensors are active can
improve bystander awareness and support situational trust. Complementary user controls that
permit teachers, caregivers, or administrators to disable, limit, or configure sensing modalities
provide practical mechanisms for restricting data collection in sensitive contexts. Crucially,
transparency must encompass more than perceptual indicators: meaningful consent requires
accessible disclosures about data flows, retention schedules, purposes of processing, and
mechanisms for access, correction, and deletion. Without such explanatory and governance
elements, passive notification is unlikely to translate into genuine agency for affected
individuals (Richards & King, 2014; Westin, 2003).

2.2 Privacy by Design and Negative Design

Privacy-by-Design has gained broad endorsement in policy and scholarly discourse as a
foundational principle for protecting personal data (Cavoukian, 2009). Applied to robotic
systems, this principle requires that privacy safeguards be integrated into system architectures
and development lifecycles rather than appended as post-hoc fixes. Practical measures
include privacy-preserving default settings (e.g., conservative logging policies, sensor
duty-cycling), edge processing to keep sensitive data local, encrypted storage, and
fine-grained access controls that limit data exposure to only those modules or actors with a
demonstrated need.

Complementing affirmative design is the notion of negative design, which purposefully
constrains robotic capabilities to prevent privacy harm. Negative-design strategies for
embodied agents include context-aware suspension of sensing (e.g., geofenced “no-capture”
zones and behaviors like turning away in bathrooms or clearly private interactions), aggressive
data-minimization and storage-limitation (e.g., deletion of non-essential recordings), and hard



defaults against sensitive inferences (e.g., facial recognition or affect-state inference disabled
by default). These strategies are consistent with privacy-by-design/default obligations and with
emerging legal limits on certain biometric/affective inferences, while aligning with contextual-
integrity’s emphasis on protecting dignity and autonomy in specific settings (GDPR, 2016;
EDPB, Guidelines 4/2019, 2020; Schiff et al., 2007).

2.3 Technical Safequards: Privacy-Enhancing Technologies

Building on privacy-centric design and negative-design constraints, privacy-enhancing
technologies (PETs) provide concrete mechanisms to operationalize those principles in
robotic systems. Edge Al (on-device processing) aligns with privacy-by-design by keeping raw
sensor data local—reducing cloud dependence and exposure during transmission or
centralized storage (Zhou et al., 2019). Federated learning allows multiple robots to improve
a model collaboratively without sharing raw data, preserving individual privacy while
supporting collective learning (McMahan et al., 2017). Differential privacy adds quantifiable
protection by injecting calibrated noise into outputs or model updates so that contributions of
any individual subject cannot be reverse-engineered (Abadi et al., 2016). Homomorphic
encryption and secure aggregation further protect collaboration by enabling computation on
encrypted data and privacy-preserving combination of model updates, respectively (Bonawitz
et al., 2017; Gentry, 2009). In robotics, these PETs increasingly appear in privacy-preserving
perception and mapping, e.g., SLAM/localization pipelines that restrict what is revealed or
computed (Geppert et al., 2022; Shibuya et al., 2020). Taken together, PETs complement
architectural measures (local processing, conservative defaults, negative design) by providing
technical guarantees that limit data exposure, constrain inferential risks, and support
compliance with data-minimization and privacy-by-design obligations.

3. Case Study: Educational Robots in Classroom Settings

The introduction of educational robots into classrooms provides a concrete example of how
privacy concerns manifest in practice. Consider a mobile robot equipped with cameras and
object detection algorithms, designed to teach students about robotics and machine learning,
the platform simultaneously generates primary sensor outputs (video, audio, depth) and
secondary inferences (face images, trajectories, interaction logs), each of which may implicate
student privacy.

3.1 Privacy risks and harms

Privacy risks in classroom deployments arise along several dimensions. First, there is a well-
documented opacity for non-expert users between “minimally invasive” functions (such as
proximity sensing for obstacle avoidance) and more intrusive inferences (e.g., facial
recognition or affect estimation). This obscurity complicates contextual privacy judgments and
informed assessment of risk in HRI (Lee et al., 2011; Serholt et al., 2017). Inference risks also
include downstream repurposing of logs (movement, participation, social interaction) for
profiling, a phenomenon emphasized in the data-ethics literature on big-data inference
(Richards & King, 2014; Wachter & Mittelstadt, 2019).

Second, embodied sensing routinely captures bystanders and other third parties who
have not provided meaningful consent; especially acute in classrooms where participation may
be mandatory and power asymmetries are high (Serholt et al., 2017; Sharkey, 2016). This
places a premium on transparency, default minimization, and child-specific safeguards
recognized in EU data-protection doctrine (“GDPR Arts. 5 & 25,” n.d.).

Third, fairness and accuracy risks accompany computer-vision pipelines commonly
used in educational robots. Large-scale evaluations show systematic performance disparities
by demographic attributes in face analysis and detection (Buolamwini & Gebru, 2018; Wilson
et al.,, 2019), raising the prospect of disproportionate harm to minoritized students via
misclassification. Finally, security remains a persistent concern: robotics stacks and
connected peripherals have exhibited exploitable vulnerabilities that enable eavesdropping or



data exfiltration (Yaacoub et al., 2022). Recent cases with consumer “toy robots” show risks
like unauthorized video chat, account takeovers, and children’s data leaks; threats that could
extend to schools if similar components are used (Kaspersky, 2024).

3.2 Technical and procedural mitigations

A defensible posture combines privacy-by-design defaults with PETs. Edge processing keeps
raw sensor data local, reducing exposure from transmission or cloud aggregation and aligning
with GDPR’s data-minimization and “data protection by design and by default” obligations
(“GDPR Arts. 5 & 25,” n.d.; EDPB, Guidelines 4/2019, 2020; Zhou et al., 2019). Where
aggregate learning is needed across devices, federated learning avoids sharing raw data and
has mature threat models and deployment patterns (Kairouz et al., 2021). For analytics that
produce counts or models, differential privacy provides quantifiable protection against
singling-out (Dwork & Roth, 2014).

When cameras are necessary, anonymization/obfuscation can lower identifiability:
classical k-anonymity for tabular logs (Sweeney, 2002), automatic face blurring for video, and
emerging privacy-preserving visual-SLAM/localization methods that conceal scene
appearance by operating on line-cloud or transformed features instead of raw images
(Geppert et al., 2022; Shibuya et al., 2020). Systems should expose configurable “privacy
modes” to disable sensing or reduce sampling during sensitive activities, alongside persistent
recording indicators and child-appropriate notices (Age Appropriate Design, 2025).

Retention and accountability measures matter as much as front-end minimization:
default short retention with automatic deletion, purpose limitation, and auditable access-
logging are expected under GDPR principles and design-by-default guidance (“GDPR Art. 5,”
n.d.; EDPB, Guidelines 4/2019, 2020).

3.3 Legal and regulatory considerations

Deployments in schools implicate heightened duties because minors’ data merit “specific
protection” (“Recital 38 - GDPR,” n.d.). Controllers must identify a lawful basis, respect
purpose limitation and minimization (“GDPR Art. 5,” n.d.), implement data protection by design
and by default (‘GDPR Art. 25,” n.d.), and conduct a Data Protection Impact Assessment
where processing is likely high-risk—for example, systematic monitoring of publicly accessible
areas. The EU Al Act also bans emotion-recognition systems in educational settings and
tightens controls on certain biometric uses, clarifying boundaries for classroom Al. National
practice varies: for example, New York State prohibits K-12 schools from using facial
recognition, citing accuracy and civil-rights concerns—illustrating how local regulators may go
beyond EU-level baselines in school contexts (NYSED, 2023). Beyond EU/US contexts,
regulatory approaches can differ significantly—for instance, some Asia-Pacific jurisdictions
emphasize data localization and state oversight, while others lack comprehensive protections,
creating divergent expectations for educational deployments.

4. Reflection & Conclusion

Privacy in robotics extends beyond legal compliance to encompass dignity, autonomy, and
digital self-determination. Robots operating in homes, classrooms, and clinics continuously
sense, infer, and act, raising questions about how to protect vulnerable groups, whether
robot-specific rules on consent and transparency are needed, and how social norms must
adapt to persistent observation. Addressing these challenges demands interdisciplinary
collaboration and participatory engagement, supported by technical safeguards (privacy-by-
design, PETs, negative design) and organizational measures such as procurement
standards and training. Privacy should be evaluated not only in terms of compliance but also
by its impact on autonomy. Viewing it as protection of the digital self reorients development
toward human well-being, grounded in proportionality, accountability, and respect.
Embedding these values increases the likelihood that social and educational robots
empower rather than surveil.



While robotic systems promise significant benefits, their embodied sensing and
inferential capacities generate privacy risks that current regulations and design practices
cannot fully address. Mitigation requires integrating privacy into system architectures,
deploying safeguards such as edge processing and encryption, and strengthening
governance through transparency, user control, and enforceable oversight. In education,
privacy protections foster trust between students and institutions. They also support inclusivity
and equity by ensuring all learners benefit without disproportionate risks.
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