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Abstract: Large Language Models (LLMs) such as ChatGPT are increasingly present 
in programming education, but their educational value depends on how they are 
integrated into student learning. This paper reports on a baseline experiment involving 
thirty sophomore computing students at a rural state university in the Philippines, 
classified as novices based on pre-test performance and randomly assigned to AI-
assisted and non-AI groups. The AI-assisted group accessed ChatGPT through the 
free-tier web interface, which in July 2025 defaulted to the GPT-4o model. Students 
were given two hours to solve three programming problems, followed by a post-test 
and a focus group discussion. Screen recordings, rubric-based scoring, and observer 
notes were analyzed to examine coding behaviors and learning outcomes. As 
expected, the AI-assisted group achieved higher task completion and produced more 
structurally advanced code, though this often relied on repeated prompting rather than 
independent debugging. By contrast, the non-AI group generated less polished 
solutions but engaged more deeply in problem decomposition and iterative debugging, 
resulting in significantly greater post-test gains. Rather than presenting this efficiency-
understanding trade-off as a new discovery, the study contributes contextualized 
evidence from an underexplored novice setting and provides empirical grounding for 
ongoing work that designs scaffolded, pedagogically guided integration of LLMs. The 
findings highlight that unstructured AI use fosters dependency, whereas structured use 
has the potential to balance efficiency with meaningful conceptual learning. 
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1. Introduction

Large Language Models (LLMs) such as ChatGPT are increasingly being integrated into 
education, including programming instruction. These tools provide immediate solutions, 
generate structured code, and offer explanations that can support novice learners. However, 
while LLMs may enhance efficiency, they also raise concerns about overreliance and reduced 
opportunities for independent problem-solving skills that are essential for building foundational 
programming competence. 

At the researchers’ university, a Learning Continuity Review Program is conducted 
annually to measure students’ mastery of major courses. Although ungraded, it serves as a 
diagnostic measure of cumulative learning. Recent results revealed consistently low 
performance in programming courses, particularly Programming 1 and Programming 2, even 
after course completion. Interviews further revealed that many students had relied heavily on 
AI tools such as ChatGPT to complete assignments during hybrid learning. While this reliance 
enabled them to finish tasks, it appeared to limit opportunities for practice and deeper 
understanding. 

International studies have already established that the efficiency–understanding trade-
off is a recurring outcome of LLM use in programming education (e.g., Silva et al., 2024; Sun 
et al., 2024). Yet there remains limited empirical evidence of how this dynamic unfolds among 
novice programmers in under-resourced university contexts, where AI use intersects with 



other challenges such as gaps in preparation, lack of access to computing resources, and 
language barriers. This study therefore contributes a contextualized baseline by examining 
how novices in a rural Philippine state university approach programming problems with and 
without LLM assistance. 

Specifically, it compares coding behaviors, debugging strategies, task completion, 
post-test performance, and student reflections between two groups: one with access to 
ChatGPT (GPT-4o, July 2025 free-tier version) and one without. Rather than positioning this 
trade-off as a novel finding, the study’s contribution lies in documenting it within an 
underexplored novice setting and using the results to inform the next phase of research, which 
involves designing scaffolded, pedagogically guided integration of LLMs in programming 
education. 

2. Potential of LLMs in Programming Education

Introductory programming has long been recognized as one of the most challenging areas in 
computing education. Novice programmers often encounter difficulties in problem 
decomposition, debugging, and integrating programming constructs into complete solutions 
(Robins et al., 2003; Luxton-Reilly et al., 2018). These challenges contribute to high failure 
and attrition rates in programming courses worldwide. Against this backdrop, the emergence 
of generative artificial intelligence (AI) tools, particularly large language models (LLMs) such 
as ChatGPT, has introduced both opportunities and risks for programming education. 

Ahmed et al. (2024) evaluated ChatGPT’s viability as a teaching assistant in 
introductory programming. They found that the tool could clarify concepts and provide step-
by-step guidance, but was less effective at addressing nuanced misconceptions or 
personalized debugging. Similarly, Deriba et al. (2023) emphasized in a mini-review that 
ChatGPT is most effective when positioned as a complement to, rather than a substitute for, 
student reasoning. 

In higher education settings, students have generally expressed positive perceptions 
of ChatGPT. Ma, Chen, and Konomi (2024, 2025) reported that learners valued its ability to 
give immediate feedback and alternative explanations in Python courses. Other studies argue 
that generative AI can help sustain higher-order thinking and programming logic when 
integrated thoughtfully into curricula (Nathaniel et al., 2025). According to Park and Kim 
(2025), code suggestions and explanations improved performance, while Matthews et al. 
(2025) noted that ChatGPT accelerated practice but required guidance to avoid misuse. 
Collectively, these studies suggest that LLMs may serve as useful scaffolds for novice 
programmers if their use is carefully structured. 

2.1 Risks and Challenges of Overreliance 

Research also points to risks associated with heavy dependence on AI tools. In a scientific 
computing course, Groothuijsen et al. (2024) observed that students frequently used ChatGPT 
for debugging, explanations, and optimization. While this supported some aspects of learning, 
instructors worried about declining code quality and reduced collaboration. Similarly, Silva et 
al. (2024) highlighted the danger of shallow understanding and academic integrity issues when 
ChatGPT is used without proper oversight. 

Humble et al. (2024) explicitly described ChatGPT’s dual role as either a tool for 
“cheaters” or for “AI-enhanced learners.” Their findings suggest that outcomes depend heavily 
on how students employ the tool and how instructors design its integration. Husain (2024) also 
examined instructors’ perspectives, showing enthusiasm for the potential of ChatGPT but 
concern about uncritical use. Sun et al. (2024) found that while ChatGPT altered student 
behaviors and perceptions, it could also reduce opportunities for independent reasoning. 
Likewise, Xue et al. (2024) reported mixed outcomes in an introductory CS course, where 
efficiency improved but deeper learning did not consistently occur. 

From the student perspective, ChatGPT has been described as a form of “augmented 
intelligence” that speeds up problem-solving but can also foster dependency (Yilmaz & Yilmaz, 
2023). Güner and Er (2025) demonstrated that interaction patterns with ChatGPT varied 



depending on instructional design and teacher guidance. Andalibi et al. (2024) similarly found 
that its effectiveness depended on the balance students maintained between AI assistance 
and independent reasoning. 

2.2 Toward Scaffolding Rather Than Substitution 

Synthesizing these studies, it becomes evident that ChatGPT’s role in programming education 
is not inherently positive or negative. When structured as scaffolding, it can provide hints, 
generate examples, and reduce surface-level barriers such as syntax errors, allowing learners 
to concentrate on problem-solving (Ahmed et al., 2024; Nathaniel et al., 2025). However, when 
used as a shortcut for complete solutions, it risks bypassing the reasoning processes that 
novice programmers most need to develop (Groothuijsen et al., 2024; Humble et al., 2024). 

This dual potential reflects the findings of the present study, where AI-assisted 
students demonstrated greater efficiency but less independent reasoning, while those without 
AI engaged more deeply despite producing fewer polished solutions. The literature therefore 
underscores the importance of pedagogical design: rather than banning or fully embracing 
ChatGPT, educators should integrate it in ways that encourage students to reason through 
problems while using AI as a supportive scaffold. 

3. Methods

3.1 Participants 

Thirty (30) sophomore computing students participated in the study. All had completed 
Programming 1 and Programming 2, which covered topics up to multidimensional arrays but 
not object-oriented programming. Although exposed to core programming content, a pre-test 
revealed that many struggled to integrate these concepts, consistent with criteria identifying 
novices as those who possess fragmented or incomplete programming knowledge (Robins et 
al., 2003; Luxton-Reilly et al., 2018). 

Students were divided at random into two groups of fifteen: one permitted to use 
ChatGPT (AI-assisted) and the other restricted from any AI support (non-AI). Both groups then 
completed a 20-item pre-test. Analysis of the scores showed that the AI-assisted group (M = 
9.20, SD = 1.93, n = 15) and the non-AI group (M = 9.40, SD = 1.69, n = 15) performed at 
comparable levels, t(26) = -0.27, p = .79, indicating no meaningful difference at baseline. 

3.2 Tasks and Procedure 

Each group was given two hours to solve three novice-appropriate programming problems: (1) 
a palindrome checker, (2) a program to find the second largest number from a list of integers, 
and (3) a grade calculator that drops the lowest grade and computes the average with an 
equivalent letter grade. These problems required integration of loops, conditionals, and arrays, 
but were designed to be solvable within the allotted time. 

The non-AI group solved the problems without AI assistance but were allowed to 
consult their notes for syntax and keyword references. The AI-assisted group accessed 
ChatGPT through the free-tier web interface, which in July 2025 defaulted to the GPT-4o 
model. Students were free to use ChatGPT for generating, revising, or debugging code, and 
prompts/outputs were logged to ensure reproducibility. Both groups also had access to search 
engines, though search behavior was recorded separately. 

Sessions were conducted in a computer laboratory, where each student’s screen was 
recorded to capture their coding process. Three observers were assigned, one per row of 
terminals, to note behaviors such as reliance on notes, clarifying questions, or use of AI 
prompts. 

To ensure consistency in assessment, task completion was defined as producing a 
program that satisfied all requirements: dynamic user input, correct execution across possible 



test cases, and logical alignment with the task. Completed programs were further classified 
into categories (Table 1). 

Table 1. Criteria for Categorizing Student Programming Solutions 

Category Definition Example 

Completed and 
correct  
(10 points) 

Logic and syntax correct; dynamic 
input; passed all test cases; 
includes retry/exit option. 

Fully functional palindrome 
checker with user input and exit 
prompt. 

Partially 
completed 
(8 points) 

Core logic correct but 
requirements unmet (e.g., some 
inputs hardcoded). 

Grade calculator works but 
number of grades fixed in code. 

Completed with 
correct logic but 
syntax errors  
(6 points) 

Solution logic is accurate but 
syntax mistakes prevent proper 
execution. 

Loop condition correct but 
program fails due to missing 
colon/bracket. 

Completed but 
with logical errors 
(4 points) 

Code structurally complete but 
produces incorrect results due to 
flawed reasoning. 

Second-largest number program 
always outputs the maximum 
value. 

Incomplete 
(2 points) 

Program contains fragments (e.g., 
input code) but misses the core 
logic to solve the problem. 

Code only takes input without 
performing palindrome check. 

No solution 
(0 points) 

No relevant code submitted for the 
problem. 

Blank file or trivial print 
statements unrelated to the task. 

After the coding session, students took a fifteen-minute break, followed by a post-test 
identical to the pre-test. The test served as the primary outcome measure for conceptual 
learning. Code quality and task completion were analyzed as secondary outcomes, providing 
insight into efficiency and process but not treated as equivalent to learning gain. Finally, 
separate focus group discussions (FGDs) were conducted to gather qualitative insights into 
students’ experiences. 

4. Results

4.1  Primary and Secondary Outcomes 

The study assessed two types of outcomes: (a) conceptual learning gains measured by the 
post-test (primary outcome), and (b) task completion and code quality (secondary outcomes) 
during the programming session. 

4.1.1 Task Completion and Code Quality (secondary outcome) 

Across 45 solutions per group (3 problems × 15 students), the AI group produced 39 
completed-and-correct solutions and 6 partially completed; none fell into the error categories. 
The non-AI group produced 28 completed-and-correct, 6 partially completed, 6 completed with 
correct logic but syntax errors, and 5 completed but with logical errors (Table 2). Using the 
definitions specified in Methods, this means the AI group more frequently delivered programs 
that satisfied all requirements (dynamic user input, correct behavior across test cases, and full 
flow), whereas the non-AI group showed a wider spread across partial, logical-error, and 
syntax-error outcomes. 

Table 2. Comparison of Task Completion 

Category AI-Group Non-AI Group 

Completed and correct 39 28 

Partially completed 6 6 



Completed with correct logic but syntax errors 0 6 

Completed but with logical errors 0 5 

Incomplete 0 0 

No solution 0 0 

TOTAL 45 45 

Using the rubric-based scoring scheme (maximum of 30 points per student), the AI-
assisted group achieved a higher mean solution quality score (M = 29.20, SD = 0.98, n = 15) 
compared to the non-AI group (M = 25.60, SD = 4.00, n = 15). An independent-samples t-test 
assuming unequal variances indicated that this difference was statistically significant, t(16) = 
3.26, p = .005 (two-tailed). This result, while expected, confirms that ChatGPT assistance 
produces more polished and complete outputs during time-limited tasks. 

4.1.2 Post-test Performance (primary outcome) 

The post-test results showed a notable contrast between the two groups. Students in the AI-
assisted condition obtained an average score of 10.87 (SD = 1.78, n = 15), while those in the 
non-AI condition achieved a higher mean of 12.40 (SD = 1.90, n = 15). A comparison of means 
confirmed that this gap was statistically reliable, t(28) = –2.13, p = .04. Although both groups 
improved from their pre-test scores, the greater gains of the non-AI group indicate that working 
without ChatGPT encouraged deeper engagement with programming logic and syntax, even 
if their solutions were less efficient. 

4.2 Coding Structure and Process 

Analysis of student submissions and screen recordings revealed distinct differences in coding 
structure. The AI-assisted group’s programs show outputs that were structured, modular, and 
neatly formatted with functions and consistent naming conventions. In many cases, this 
produced code that looked more advanced than typical novice work. However, this structure 
was often adopted directly from ChatGPT, with students showing limited evidence of 
independent decomposition or debugging. Their process was characterized by copying 
problem statements into ChatGPT, pasting generated code into the IDE, and returning to the 
tool for revisions when outputs failed to meet requirements such as dynamic input handling. 
Although students in this group also had access to a search engine, only three used it, and 
their searches focused on locating completed solutions rather than consulting syntax 
references or conceptual explanations. This suggests that both ChatGPT and traditional 
search were treated as sources of ready-made answers rather than tools for incremental 
reasoning. 

By contrast, the non-AI group produced novice-like codes that can be described as 
linear, sequential, and less polished, with little to no modularization. Students often began 
incrementally, first writing preliminary code such as import statements or input-handling 
snippets, testing these, and only then extending their logic step by step. This bottom-up 
approach reflected a slower but more effortful form of problem decomposition. Students also 
asked clarifying questions about problem constraints before coding, demonstrating active 
engagement in understanding the requirements. Table 3 summarizes the observed coding 
structure characteristics of the two groups. 

Table 3. Comparison of Coding Structures Between AI-Assisted and Non-AI Groups 

Aspect AI-Assisted Group Non-AI Group 

Code 
organization 

Structured, modular, use of functions Linear, sequential, single-
block style 

Naming 
conventions 

Consistent, descriptive (from LLM 
outputs) 

Inconsistent, often generic 
(e.g., x, y) 

Problem 
decomposition 

Outsourced to ChatGPT (functions 
auto-generated) 

Incremental, bottom-up 
decomposition 



Debugging 
approach 

Relied on re-prompting ChatGPT for 
revisions 

Iterative testing and manual 
debugging 

Clarity of 
requirements 

Few clarifications asked; assumed AI 
handles interpretation 

Asked clarifying questions 
before coding 

4.3 Focus-Group Insights 

The focus group discussions further clarified these patterns. Students in the AI-assisted group 
admitted that they expected ChatGPT to interpret the problems for them and provide ready-
made solutions. While they attempted to understand the generated code, they reported 
difficulty debugging or revising independently, often relying on ChatGPT to make corrections. 
Several highlighted the additional challenge of expressing what they want or formulating 
precise prompts in English, noting that vague or incomplete prompts frequently led to outputs 
that did not satisfy requirements. 

Non-AI group students described their primary challenges as constructing the logic of 
the solutions, recalling relevant concepts, and remembering syntax. Yet they emphasized that 
working without AI forced them to carefully think through the problems, review their notes, and 
practice decomposition and debugging. Some contrasted this experience with their freshman 
year, when reliance on AI for homework made tasks easier but limited their learning. In this 
activity, though harder, they felt that solving problems without AI reinforced their understanding 
and confidence. 

5. Discussion

The findings of this study reveal a nuanced picture of how novice programmers interact with 
AI assistance during problem solving. On one hand, the AI-assisted group produced 
significantly higher quality solutions during the activity, as shown by their rubric-based scores 
(M = 29.20, SD = 0.98) compared to the non-AI group (M = 25.60, SD = 4.00), t(16) = 3.26, p 
= .005. Their programs exhibited structured and modular qualities typical of ChatGPT-
generated outputs, including consistent formatting and the use of functions. This efficiency 
advantage translated into more problems being solved correctly within the two-hour timeframe. 
On the other hand, the post-test results told a different story: the non-AI group outperformed 
the AI group (M = 12.40, SD = 1.90 vs. M = 10.87, SD = 1.78), t(28) = –2.13, p = .04, indicating 
stronger conceptual learning when students worked without AI support. 

This contrast highlights a trade-off between short-term efficiency and deeper cognitive 
engagement. The AI group, by relying heavily on ChatGPT, often bypassed the processes of 
problem decomposition and debugging that are central to novice learning. Screen recordings 
showed that many students simply pasted entire problem statements into ChatGPT and relied 
on iterative prompting rather than reasoning through errors. Even when search engines were 
available, only three students used them, and primarily to locate complete solutions rather 
than to check references or syntax. These behaviors echo concerns raised in prior research 
about the risks of overreliance on AI tools, which can compromise authentic engagement with 
programming concepts (Groothuijsen et al., 2024; Humble et al., 2024; Silva et al., 2024). 

By contrast, students in the non-AI group approached problems more incrementally 
and effortfully. They often began with small code fragments such as input handling, tested 
these, and then gradually built up the solution. They also asked clarifying questions about 
problem constraints, which demonstrated active engagement in problem understanding. 
Although this group produced fewer fully correct solutions within the limited time, their post-
test performance suggests that the struggle itself facilitated better consolidation of concepts. 
This finding resonates with Yilmaz and Yilmaz (2023), who found that students recognize the 
value of AI as “augmented intelligence” but also acknowledge its potential to create 
dependency. Similarly, Güner and Er (2025) observed that student-AI interactions vary widely 
depending on instructional design, underscoring the importance of context in shaping 
outcomes. 

At the same time, the results should not be read as an argument against the use of 
LLMs in programming education. While unrestricted use appears to encourage overreliance, 



prior studies demonstrate that AI tools can be highly effective when employed as scaffolding. 
Ahmed et al. (2024) showed that ChatGPT can function as a teaching assistant by providing 
stepwise explanations and supporting novice learners, while Nathaniel et al. (2025) argued 
that generative AI can sustain higher-order thinking when aligned with problem-solving goals. 
In this light, the present study suggests that the problem is not the presence of AI but rather 
how it is integrated into learning environments. Without structure, students may defer too much 
cognitive work to the tool. With structure, however, AI can be used to guide, hint, or model 
solutions in ways that support rather than replace student reasoning. 

6. Conclusion and Ongoing Work

The findings of this study provide a nuanced understanding of how novice programmers 
engage with AI assistance during problem solving. The results show two contrasting outcomes. 
On one hand, the AI-assisted group produced significantly higher-quality solutions during the 
activity (M = 29.20, SD = 0.98 vs. M = 25.60, SD = 4.00, t(16) = 3.26, p = .005). Their programs 
displayed structured and modular qualities typical of ChatGPT-generated outputs, including 
consistent formatting and the use of functions. This efficiency advantage enabled them to 
complete more tasks within the two-hour timeframe. Such a result, however, was anticipated 
given prior demonstrations of ChatGPT’s ability to generate polished code (Matthews et al., 
2025). 

More importantly, the post-test outcomes, treated as the primary measure of 
conceptual learning, revealed that the non-AI group outperformed the AI group (M = 12.40, 
SD = 1.90 vs. M = 10.87, SD = 1.78, t(28) = –2.13, p = .04). This suggests that students who 
solved problems independently engaged more deeply with problem decomposition and 
debugging, leading to greater consolidation of concepts. In other words, while the AI group 
benefitted from efficiency in the short term, the non-AI group gained longer-term conceptual 
understanding. Screen recordings showed that AI-assisted students often pasted entire 
problem statements into ChatGPT, adopted generated code with minimal adaptation, and 
relied on repeated prompting rather than reasoning through errors. Search engine use was 
rare and primarily oriented toward locating complete solutions. These behaviors echo 
concerns raised in earlier studies that unstructured reliance on AI can displace the very 
reasoning processes novices need to develop (Groothuijsen et al., 2024; Humble et al., 2024; 
Silva et al., 2024). By contrast, non-AI students approached problems incrementally, 
constructing code fragments step by step, testing iteratively, and clarifying problem constraints 
before coding. Although their code was less polished, this struggle appeared to reinforce 
conceptual learning. At the same time, these findings should not be interpreted as an 
argument against the use of LLMs in programming education. Prior work has shown that AI 
tools can be highly effective when integrated as scaffolding rather than as a wholesale 
replacement for student reasoning (Ahmed et al., 2024; Nathaniel et al., 2025). The present 
study contributes by situating the efficiency-understanding trade-off in an underexplored 
context on novice programmers in a rural state university, and by using it as a baseline for 
designing solution-oriented interventions. 

Several actionable strategies emerge for educators: 

• Constrain the role of ChatGPT to scaffolding tasks such as offering hints, clarifying
syntax, or suggesting debugging strategies, rather than permitting full code generation.

• Require reflective engagement by having students explain, annotate, or modify AI-
generated outputs before submission.

• Embed AI use in structured activities (e.g., guided labs, pair programming with AI)
where reasoning steps remain visible and accountable.

• Encourage critical comparison by asking students to evaluate AI-generated solutions
against their own attempts.
Taken together, these practices align with the principle that the educational value of AI

is not in its availability but in how instructors design its use. Without structure, students may 
defer too much cognitive work to the tool; with structure, AI can function as a productive 
scaffold that balances efficiency with conceptual growth. 
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