Jiang, B. et al. (Eds.) (2025). Proceedings of the 33" International Conference on Computers in Education. Asia-
Pacific Society for Computers in Education

Efficiency or Understanding?
Novice Programmers’ Problem-Solving
With and Without ChatGPT

May Marie P. TALANDRON-FELIPE
University of Science and Technology of Southern Philippines — Main Campus (Alubijid),
Philippines
maymarie.talandron-felipe@ustp.edu.ph

Abstract: Large Language Models (LLMs) such as ChatGPT are increasingly present
in programming education, but their educational value depends on how they are
integrated into student learning. This paper reports on a baseline experiment involving
thirty sophomore computing students at a rural state university in the Philippines,
classified as novices based on pre-test performance and randomly assigned to Al-
assisted and non-Al groups. The Al-assisted group accessed ChatGPT through the
free-tier web interface, which in July 2025 defaulted to the GPT-40 model. Students
were given two hours to solve three programming problems, followed by a post-test
and a focus group discussion. Screen recordings, rubric-based scoring, and observer
notes were analyzed to examine coding behaviors and learning outcomes. As
expected, the Al-assisted group achieved higher task completion and produced more
structurally advanced code, though this often relied on repeated prompting rather than
independent debugging. By contrast, the non-Al group generated less polished
solutions but engaged more deeply in problem decomposition and iterative debugging,
resulting in significantly greater post-test gains. Rather than presenting this efficiency-
understanding trade-off as a new discovery, the study contributes contextualized
evidence from an underexplored novice setting and provides empirical grounding for
ongoing work that designs scaffolded, pedagogically guided integration of LLMs. The
findings highlight that unstructured Al use fosters dependency, whereas structured use
has the potential to balance efficiency with meaningful conceptual learning.
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1. Introduction

Large Language Models (LLMs) such as ChatGPT are increasingly being integrated into
education, including programming instruction. These tools provide immediate solutions,
generate structured code, and offer explanations that can support novice learners. However,
while LLMs may enhance efficiency, they also raise concerns about overreliance and reduced
opportunities for independent problem-solving skills that are essential for building foundational
programming competence.

At the researchers’ university, a Learning Continuity Review Program is conducted
annually to measure students’ mastery of major courses. Although ungraded, it serves as a
diagnostic measure of cumulative learning. Recent results revealed consistently low
performance in programming courses, particularly Programming 1 and Programming 2, even
after course completion. Interviews further revealed that many students had relied heavily on
Al tools such as ChatGPT to complete assignments during hybrid learning. While this reliance
enabled them to finish tasks, it appeared to limit opportunities for practice and deeper
understanding.

International studies have already established that the efficiency—understanding trade-
off is a recurring outcome of LLM use in programming education (e.g., Silva et al., 2024; Sun
et al., 2024). Yet there remains limited empirical evidence of how this dynamic unfolds among
novice programmers in under-resourced university contexts, where Al use intersects with



other challenges such as gaps in preparation, lack of access to computing resources, and
language barriers. This study therefore contributes a contextualized baseline by examining
how novices in a rural Philippine state university approach programming problems with and
without LLM assistance.

Specifically, it compares coding behaviors, debugging strategies, task completion,
post-test performance, and student reflections between two groups: one with access to
ChatGPT (GPT-40, July 2025 free-tier version) and one without. Rather than positioning this
trade-off as a novel finding, the study’'s contribution lies in documenting it within an
underexplored novice setting and using the results to inform the next phase of research, which
involves designing scaffolded, pedagogically guided integration of LLMs in programming
education.

2. Potential of LLMs in Programming Education

Introductory programming has long been recognized as one of the most challenging areas in
computing education. Novice programmers often encounter difficulties in problem
decomposition, debugging, and integrating programming constructs into complete solutions
(Robins et al., 2003; Luxton-Reilly et al., 2018). These challenges contribute to high failure
and attrition rates in programming courses worldwide. Against this backdrop, the emergence
of generative artificial intelligence (Al) tools, particularly large language models (LLMs) such
as ChatGPT, has introduced both opportunities and risks for programming education.

Ahmed et al. (2024) evaluated ChatGPT’s viability as a teaching assistant in
introductory programming. They found that the tool could clarify concepts and provide step-
by-step guidance, but was less effective at addressing nuanced misconceptions or
personalized debugging. Similarly, Deriba et al. (2023) emphasized in a mini-review that
ChatGPT is most effective when positioned as a complement to, rather than a substitute for,
student reasoning.

In higher education settings, students have generally expressed positive perceptions
of ChatGPT. Ma, Chen, and Konomi (2024, 2025) reported that learners valued its ability to
give immediate feedback and alternative explanations in Python courses. Other studies argue
that generative Al can help sustain higher-order thinking and programming logic when
integrated thoughtfully into curricula (Nathaniel et al., 2025). According to Park and Kim
(2025), code suggestions and explanations improved performance, while Matthews et al.
(2025) noted that ChatGPT accelerated practice but required guidance to avoid misuse.
Collectively, these studies suggest that LLMs may serve as useful scaffolds for novice
programmers if their use is carefully structured.

2.1 Risks and Challenges of Overreliance

Research also points to risks associated with heavy dependence on Al tools. In a scientific
computing course, Groothuijsen et al. (2024) observed that students frequently used ChatGPT
for debugging, explanations, and optimization. While this supported some aspects of learning,
instructors worried about declining code quality and reduced collaboration. Similarly, Silva et
al. (2024) highlighted the danger of shallow understanding and academic integrity issues when
ChatGPT is used without proper oversight.

Humble et al. (2024) explicitly described ChatGPT’s dual role as either a tool for
“cheaters” or for “Al-enhanced learners.” Their findings suggest that outcomes depend heavily
on how students employ the tool and how instructors design its integration. Husain (2024) also
examined instructors’ perspectives, showing enthusiasm for the potential of ChatGPT but
concern about uncritical use. Sun et al. (2024) found that while ChatGPT altered student
behaviors and perceptions, it could also reduce opportunities for independent reasoning.
Likewise, Xue et al. (2024) reported mixed outcomes in an introductory CS course, where
efficiency improved but deeper learning did not consistently occur.

From the student perspective, ChatGPT has been described as a form of “augmented
intelligence” that speeds up problem-solving but can also foster dependency (Yilmaz & Yilmaz,
2023). Guner and Er (2025) demonstrated that interaction patterns with ChatGPT varied



depending on instructional design and teacher guidance. Andalibi et al. (2024 ) similarly found
that its effectiveness depended on the balance students maintained between Al assistance
and independent reasoning.

2.2 Toward Scaffolding Rather Than Substitution

Synthesizing these studies, it becomes evident that ChatGPT’s role in programming education
is not inherently positive or negative. When structured as scaffolding, it can provide hints,
generate examples, and reduce surface-level barriers such as syntax errors, allowing learners
to concentrate on problem-solving (Ahmed et al., 2024; Nathaniel et al., 2025). However, when
used as a shortcut for complete solutions, it risks bypassing the reasoning processes that
novice programmers most need to develop (Groothuijsen et al., 2024; Humble et al., 2024).

This dual potential reflects the findings of the present study, where Al-assisted
students demonstrated greater efficiency but less independent reasoning, while those without
Al engaged more deeply despite producing fewer polished solutions. The literature therefore
underscores the importance of pedagogical design: rather than banning or fully embracing
ChatGPT, educators should integrate it in ways that encourage students to reason through
problems while using Al as a supportive scaffold.

3. Methods
3.1 Participants

Thirty (30) sophomore computing students participated in the study. All had completed
Programming 1 and Programming 2, which covered topics up to multidimensional arrays but
not object-oriented programming. Although exposed to core programming content, a pre-test
revealed that many struggled to integrate these concepts, consistent with criteria identifying
novices as those who possess fragmented or incomplete programming knowledge (Robins et
al., 2003; Luxton-Reilly et al., 2018).

Students were divided at random into two groups of fifteen: one permitted to use
ChatGPT (Al-assisted) and the other restricted from any Al support (non-Al). Both groups then
completed a 20-item pre-test. Analysis of the scores showed that the Al-assisted group (M =
9.20, SD = 1.93, n = 15) and the non-Al group (M = 9.40, SD = 1.69, n = 15) performed at
comparable levels, 1(26) = -0.27, p = .79, indicating no meaningful difference at baseline.

3.2 Tasks and Procedure

Each group was given two hours to solve three novice-appropriate programming problems: (1)
a palindrome checker, (2) a program to find the second largest number from a list of integers,
and (3) a grade calculator that drops the lowest grade and computes the average with an
equivalent letter grade. These problems required integration of loops, conditionals, and arrays,
but were designed to be solvable within the allotted time.

The non-Al group solved the problems without Al assistance but were allowed to
consult their notes for syntax and keyword references. The Al-assisted group accessed
ChatGPT through the free-tier web interface, which in July 2025 defaulted to the GPT-40
model. Students were free to use ChatGPT for generating, revising, or debugging code, and
prompts/outputs were logged to ensure reproducibility. Both groups also had access to search
engines, though search behavior was recorded separately.

Sessions were conducted in a computer laboratory, where each student’s screen was
recorded to capture their coding process. Three observers were assigned, one per row of
terminals, to note behaviors such as reliance on notes, clarifying questions, or use of Al
prompts.

To ensure consistency in assessment, task completion was defined as producing a
program that satisfied all requirements: dynamic user input, correct execution across possible



test cases, and logical alignment with the task. Completed programs were further classified
into categories (Table 1).

Table 1. Criteria for Categorizing Student Programming Solutions

Category

Definition

Example

Completed and
correct

Logic and syntax correct; dynamic
input; passed all test cases;

Fully functional palindrome
checker with user input and exit

(10 points) includes retry/exit option. prompt.

Partially Core logic correct but Grade calculator works but
completed requirements unmet (e.g., some number of grades fixed in code.
(8 points) inputs hardcoded).

Completed with
correct logic but
syntax errors

(6 points)

Solution logic is accurate but
syntax mistakes prevent proper
execution.

Loop condition correct but
program fails due to missing
colon/bracket.

Completed but
with logical errors

Code structurally complete but
produces incorrect results due to

Second-largest number program
always outputs the maximum

(4 points) flawed reasoning. value.

Incomplete Program contains fragments (e.g., Code only takes input without

(2 points) input code) but misses the core performing palindrome check.
logic to solve the problem.

No solution No relevant code submitted for the Blank file or trivial print

(0 points) problem. statements unrelated to the task.

After the coding session, students took a fifteen-minute break, followed by a post-test
identical to the pre-test. The test served as the primary outcome measure for conceptual
learning. Code quality and task completion were analyzed as secondary outcomes, providing
insight into efficiency and process but not treated as equivalent to learning gain. Finally,
separate focus group discussions (FGDs) were conducted to gather qualitative insights into
students’ experiences.

4. Results
4.1 Primary and Secondary Outcomes

The study assessed two types of outcomes: (a) conceptual learning gains measured by the
post-test (primary outcome), and (b) task completion and code quality (secondary outcomes)
during the programming session.

4.1.1 Task Completion and Code Quality (secondary outcome)

Across 45 solutions per group (3 problems x 15 students), the Al group produced 39
completed-and-correct solutions and 6 partially completed; none fell into the error categories.
The non-Al group produced 28 completed-and-correct, 6 partially completed, 6 completed with
correct logic but syntax errors, and 5 completed but with logical errors (Table 2). Using the
definitions specified in Methods, this means the Al group more frequently delivered programs
that satisfied all requirements (dynamic user input, correct behavior across test cases, and full
flow), whereas the non-Al group showed a wider spread across partial, logical-error, and
syntax-error outcomes.

Table 2. Comparison of Task Completion

Category Al-Group Non-Al Group
Completed and correct 39 28
Partially completed 6 6




Completed with correct logic but syntax errors 0
Completed but with logical errors 0
0
0

Incomplete
No solution
TOTAL 45

N
mOOCﬂG)

Using the rubric-based scoring scheme (maximum of 30 points per student), the Al-
assisted group achieved a higher mean solution quality score (M =29.20, SD = 0.98, n = 15)
compared to the non-Al group (M = 25.60, SD = 4.00, n = 15). An independent-samples t-test
assuming unequal variances indicated that this difference was statistically significant, t(16) =
3.26, p = .005 (two-tailed). This result, while expected, confirms that ChatGPT assistance
produces more polished and complete outputs during time-limited tasks.

4.1.2 Post-test Performance (primary outcome)

The post-test results showed a notable contrast between the two groups. Students in the Al-
assisted condition obtained an average score of 10.87 (SD = 1.78, n = 15), while those in the
non-Al condition achieved a higher mean of 12.40 (SD = 1.90, n = 15). A comparison of means
confirmed that this gap was statistically reliable, t(28) = —2.13, p = .04. Although both groups
improved from their pre-test scores, the greater gains of the non-Al group indicate that working
without ChatGPT encouraged deeper engagement with programming logic and syntax, even
if their solutions were less efficient.

4.2 Coding Structure and Process

Analysis of student submissions and screen recordings revealed distinct differences in coding
structure. The Al-assisted group’s programs show outputs that were structured, modular, and
neatly formatted with functions and consistent naming conventions. In many cases, this
produced code that looked more advanced than typical novice work. However, this structure
was often adopted directly from ChatGPT, with students showing limited evidence of
independent decomposition or debugging. Their process was characterized by copying
problem statements into ChatGPT, pasting generated code into the IDE, and returning to the
tool for revisions when outputs failed to meet requirements such as dynamic input handling.
Although students in this group also had access to a search engine, only three used it, and
their searches focused on locating completed solutions rather than consulting syntax
references or conceptual explanations. This suggests that both ChatGPT and traditional
search were treated as sources of ready-made answers rather than tools for incremental
reasoning.

By contrast, the non-Al group produced novice-like codes that can be described as
linear, sequential, and less polished, with little to no modularization. Students often began
incrementally, first writing preliminary code such as import statements or input-handling
snippets, testing these, and only then extending their logic step by step. This bottom-up
approach reflected a slower but more effortful form of problem decomposition. Students also
asked clarifying questions about problem constraints before coding, demonstrating active
engagement in understanding the requirements. Table 3 summarizes the observed coding
structure characteristics of the two groups.

Table 3. Comparison of Coding Structures Between Al-Assisted and Non-Al Groups

Aspect Al-Assisted Group Non-Al Group
Code Structured, modular, use of functions Linear, sequential, single-
organization block style
Naming Consistent, descriptive (from LLM Inconsistent, often generic
conventions outputs) (e.g., X, y)

Problem Outsourced to ChatGPT (functions Incremental, bottom-up

decomposition  auto-generated) decomposition




Debugging Relied on re-prompting ChatGPT for lterative testing and manual

approach revisions debugging
Clarity of Few clarifications asked; assumed Al Asked clarifying questions
requirements handles interpretation before coding

4.3 Focus-Group Insights

The focus group discussions further clarified these patterns. Students in the Al-assisted group
admitted that they expected ChatGPT to interpret the problems for them and provide ready-
made solutions. While they attempted to understand the generated code, they reported
difficulty debugging or revising independently, often relying on ChatGPT to make corrections.
Several highlighted the additional challenge of expressing what they want or formulating
precise prompts in English, noting that vague or incomplete prompts frequently led to outputs
that did not satisfy requirements.

Non-Al group students described their primary challenges as constructing the logic of
the solutions, recalling relevant concepts, and remembering syntax. Yet they emphasized that
working without Al forced them to carefully think through the problems, review their notes, and
practice decomposition and debugging. Some contrasted this experience with their freshman
year, when reliance on Al for homework made tasks easier but limited their learning. In this
activity, though harder, they felt that solving problems without Al reinforced their understanding
and confidence.

5. Discussion

The findings of this study reveal a nuanced picture of how novice programmers interact with
Al assistance during problem solving. On one hand, the Al-assisted group produced
significantly higher quality solutions during the activity, as shown by their rubric-based scores
(M =29.20, SD = 0.98) compared to the non-Al group (M = 25.60, SD = 4.00), {(16) = 3.26, p
= .005. Their programs exhibited structured and modular qualities typical of ChatGPT-
generated outputs, including consistent formatting and the use of functions. This efficiency
advantage translated into more problems being solved correctly within the two-hour timeframe.
On the other hand, the post-test results told a different story: the non-Al group outperformed
the Al group (M =12.40,SD=1.90vs. M =10.87,SD =1.78), {(28) =-2.13, p = .04, indicating
stronger conceptual learning when students worked without Al support.

This contrast highlights a trade-off between short-term efficiency and deeper cognitive
engagement. The Al group, by relying heavily on ChatGPT, often bypassed the processes of
problem decomposition and debugging that are central to novice learning. Screen recordings
showed that many students simply pasted entire problem statements into ChatGPT and relied
on iterative prompting rather than reasoning through errors. Even when search engines were
available, only three students used them, and primarily to locate complete solutions rather
than to check references or syntax. These behaviors echo concerns raised in prior research
about the risks of overreliance on Al tools, which can compromise authentic engagement with
programming concepts (Groothuijsen et al., 2024; Humble et al., 2024; Silva et al., 2024).

By contrast, students in the non-Al group approached problems more incrementally
and effortfully. They often began with small code fragments such as input handling, tested
these, and then gradually built up the solution. They also asked clarifying questions about
problem constraints, which demonstrated active engagement in problem understanding.
Although this group produced fewer fully correct solutions within the limited time, their post-
test performance suggests that the struggle itself facilitated better consolidation of concepts.
This finding resonates with Yilmaz and Yilmaz (2023), who found that students recognize the
value of Al as “augmented intelligence” but also acknowledge its potential to create
dependency. Similarly, Glner and Er (2025) observed that student-Al interactions vary widely
depending on instructional design, underscoring the importance of context in shaping
outcomes.

At the same time, the results should not be read as an argument against the use of
LLMs in programming education. While unrestricted use appears to encourage overreliance,



prior studies demonstrate that Al tools can be highly effective when employed as scaffolding.
Ahmed et al. (2024) showed that ChatGPT can function as a teaching assistant by providing
stepwise explanations and supporting novice learners, while Nathaniel et al. (2025) argued
that generative Al can sustain higher-order thinking when aligned with problem-solving goals.
In this light, the present study suggests that the problem is not the presence of Al but rather
how it is integrated into learning environments. Without structure, students may defer too much
cognitive work to the tool. With structure, however, Al can be used to guide, hint, or model
solutions in ways that support rather than replace student reasoning.

6. Conclusion and Ongoing Work

The findings of this study provide a nuanced understanding of how novice programmers
engage with Al assistance during problem solving. The results show two contrasting outcomes.
On one hand, the Al-assisted group produced significantly higher-quality solutions during the
activity (M =29.20, SD =0.98 vs. M = 25.60, SD =4.00, t(16) = 3.26, p = .005). Their programs
displayed structured and modular qualities typical of ChatGPT-generated outputs, including
consistent formatting and the use of functions. This efficiency advantage enabled them to
complete more tasks within the two-hour timeframe. Such a result, however, was anticipated
given prior demonstrations of ChatGPT’s ability to generate polished code (Matthews et al.,
2025).

More importantly, the post-test outcomes, treated as the primary measure of
conceptual learning, revealed that the non-Al group outperformed the Al group (M = 12.40,
SD=1.90vs. M =10.87, SD = 1.78, t(28) = —2.13, p = .04). This suggests that students who
solved problems independently engaged more deeply with problem decomposition and
debugging, leading to greater consolidation of concepts. In other words, while the Al group
benefitted from efficiency in the short term, the non-Al group gained longer-term conceptual
understanding. Screen recordings showed that Al-assisted students often pasted entire
problem statements into ChatGPT, adopted generated code with minimal adaptation, and
relied on repeated prompting rather than reasoning through errors. Search engine use was
rare and primarily oriented toward locating complete solutions. These behaviors echo
concerns raised in earlier studies that unstructured reliance on Al can displace the very
reasoning processes novices need to develop (Groothuijsen et al., 2024; Humble et al., 2024;
Silva et al.,, 2024). By contrast, non-Al students approached problems incrementally,
constructing code fragments step by step, testing iteratively, and clarifying problem constraints
before coding. Although their code was less polished, this struggle appeared to reinforce
conceptual learning. At the same time, these findings should not be interpreted as an
argument against the use of LLMs in programming education. Prior work has shown that Al
tools can be highly effective when integrated as scaffolding rather than as a wholesale
replacement for student reasoning (Ahmed et al., 2024; Nathaniel et al., 2025). The present
study contributes by situating the efficiency-understanding trade-off in an underexplored
context on novice programmers in a rural state university, and by using it as a baseline for
designing solution-oriented interventions.

Several actionable strategies emerge for educators:

e Constrain the role of ChatGPT to scaffolding tasks such as offering hints, clarifying
syntax, or suggesting debugging strategies, rather than permitting full code generation.

e Require reflective engagement by having students explain, annotate, or modify Al-
generated outputs before submission.

e Embed Al use in structured activities (e.g., guided labs, pair programming with Al)
where reasoning steps remain visible and accountable.

e Encourage critical comparison by asking students to evaluate Al-generated solutions
against their own attempts.

Taken together, these practices align with the principle that the educational value of Al
is not in its availability but in how instructors design its use. Without structure, students may
defer too much cognitive work to the tool; with structure, Al can function as a productive
scaffold that balances efficiency with conceptual growth.
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