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Abstract: Heuristic and scaffolded teacher-student dialogues are widely regarded as
critical for fostering students' higher-order thinking and deep learning. However, large
language models (LLMs) currently face challenges in generating pedagogically rich
interactions. This study systematically investigates the structural and behavioral
differences between AI-simulated and authentic human tutoring dialogues. We
conducted a quantitative comparison using an Initiation-Response-Feedback (IRF)
coding scheme and Epistemic Network Analysis (ENA). The results show that human
dialogues are significantly superior to their AI counterparts in utterance length, as well
as in questioning (I-Q) and general feedback (F-F) behaviors. More importantly, ENA
results reveal a fundamental divergence in interactional patterns: human dialogues
are more cognitively guided and diverse, centered around a "question-factual
response-feedback" teaching loop that clearly reflects pedagogical guidance and
student-driven thinking; in contrast, simulated dialogues exhibit a pattern of
structural simplification and behavioral convergence, revolving around an
"explanation-simplistic response" loop that is essentially a simple information
transfer between the teacher and student. These findings illuminate key limitations in
current AI-generated tutoring and provide empirical guidance for designing and
evaluating more pedagogically effective generative educational dialogue systems.
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1. Introduction

Heuristic and scaffolded teacher-student dialogues are widely recognized as a core
pedagogical mechanism for promoting students’ higher-order thinking and deep learning
(Giuseffi, 2024). In particular, within one-on-one instructional settings, teachers support
students’ knowledge construction and cognitive development through questioning, responding,
and providing feedback (Rivera et al., 2025). Prior research has demonstrated that structured
instructional dialogues not only enhance students’ conceptual understanding, but also offer
observable linguistic evidence for learning and instructional analytics (Alisoy, 2025; Dai et al., 2025).

With the rapid advancement of Artificial Intelligence (AI) (Hong et al., 2025) and Large
Language Models (LLMs) (OpenAI, 2023), AI-based dialogue systems have shown great
potential for educational applications. From dialogic learning support to automated task
generation, generative AI tools are offering unprecedented flexibility in supporting instruction.
However, despite the impressive linguistic fluency of general-purpose LLMs, they still struggle
to produce dialogues that are pedagogically guided and cognitively supportive (Joseph, 2023;
Wu et al., 2025). Current models often fail to emulate the heuristic questioning of a teacher,
the responsive behavior of a student, or the hierarchical and interactive structure of multi-turn
tutoring. These limitations stem in part from a lack of multimodal understanding (Jiang et al.,
2024; Mo, Shao, et al., 2025) and difficulties in faithfully reconstructing authentic human – AI
interaction patterns (J. Chen et al., 2024; Mo, Huang, et al., 2025).

To enhance LLMs’ instructional interaction capabilities, access to high-quality
educational dialogue corpora is essential. However, real-world data collection faces
challenges such as high cost (Qi et al., 2025), ethical restrictions (Duan, Shen, et al., 2024),
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structural inconsistencies and class imbalance (Duan, Gu, et al., 2024; Duan, Yang, et al.,
2024), and significant noise in transcripts (Wang, Tu, et al., 2021; Wang, Zheng, et al., 2021),
making such corpora less suitable as training or evaluation benchmarks (Zhang et al., 2023).
Consequently, synthetic data generated by LLMs has emerged as a scalable and controllable
alternative. Among these, the approach of prompting LLMs to simulate both the teacher and
student roles in one-on-one dialogues is particularly promising. Nevertheless, the structural
authenticity of these generated dialogues in comparison to human interactions remains an
open empirical question (A. Chen et al., 2024).

This study focuses on one-on-one instructional scenarios, constructing two parallel
corpora based on the same instructional prompts: one derived from authentic teacher-student
dialogues, and the other generated through LLM simulations involving both roles. Using a
coding framework grounded in the Initiation-Response-Feedback (IRF) structure (Y. Liu, 2008)
and Epistemic Network Analysis (ENA) (Hila, 2025), we compare interactional patterns across
the two corpora in terms of behavioral distributions and structural linkages. Findings reveal
that authentic dialogues are characterized by greater cognitive nonlinearity, leapfrogging, and
diversity, whereas simulated dialogues tend to converge toward simplified structures and
repetitive patterns (Munday et al., 2023; Silseth & Furberg, 2024). To investigate the structural
fidelity and cognitive pathways represented in AI-generated tutoring dialogues, this study
addresses the following research questions:
 RQ1: What structural differences in instructional behaviors exist between AI-simulated and

authentic one-on-one tutoring dialogues?
 RQ2: Do the structural linkages among behaviors in AI-simulated dialogues reflect distinct

cognitive pathways and interactional patterns compared to those in authentic dialogues?
This study makes two primary contributions:
 It systematically compares AI-simulated and real-world one-on-one instructional dialogues

under a unified task prompt, revealing critical shortcomings in LLMs’ ability to produce
interactive diversity and cognitive coherence.

 It proposes a dual-dimensional analysis framework combining IRF-based behavioral
coding with ENA, offering a new paradigm for evaluating the structural quality of
generative educational corpora.

2. Related Work

2.1 One-on-One Heuristic Dialogue Education

In individualized instructional contexts, heuristic dialogue has long been regarded as a
fundamental mechanism supporting students’ knowledge construction (Cavagnetto et al.,
2010; Muhonen et al., 2017). Vygotsky’s theory of the Zone of Proximal Development
emphasizes the role of guided interaction in helping learners reach their developmental
potential (Vygotsky & Cole, 1978). Mercer introduced the notion of “exploratory talk,”
highlighting the importance of collaborative and reflective discourse in promoting conceptual
internalization and cognitive expansion (Mercer, 2002). Alexander further proposed the
framework of “dialogic teaching,” which values authentic, cumulative, and reflective classroom
interaction (Alexander, 2008). More recently, Socratic questioning has gained traction as a
heuristic instructional tool aimed at stimulating learners’ reflection through strategic inquiry (Qi
et al., 2024). Within this theoretical backdrop, the IRF (Initiation–Response–Feedback)
structure has been widely adopted as a classical model for analyzing instructional dialogue. It
is particularly effective in visualizing and interpreting the cognitive support pathways and
pedagogical pacing inherent in one-on-one educational settings (Waring, 2008, 2009). In this
study, we adopt IRF-based behavioral coding to analyze and compare authentic and synthetic
dialogues, offering empirical insights into the potential of LLM-driven heuristic dialogue education.

2.2 AI and the Simulation of Dialogue Education

With the rapid advancement of Generative AI (GenAI) technologies (Jiang, Wei, et al., 2025;
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Wei et al., 2024), LLMs, AI agents, and agentic workflows are increasingly applied in
instructional resource generation (Li et al., 2024), teacher behavior simulation (Jiang, Chen, et
al., 2025), and corpus construction for educational applications (Zhuang, Mao, et al., 2024).
These approaches offer a potential solution to the shortage of high-quality educational data,
yet also raise critical questions regarding the authenticity and pedagogical value of
AI-generated content. Prior studies have explored LLMs’ ability to generate teacher questions
(Shi et al., 2023), instructional feedback (Zhuang, Wu, et al., 2024), and simulations of
knowledge component transitions during learning (Jiang, Tang, et al., 2025). Nonetheless,
many of these systems suffer from rigid structure, homogenized dialogue acts, and shallow
cognitive engagement (Cuskley et al., 2024; Niu et al., 2024). These issues bring us to a key
question: Do simulated dialogues reflect the structural and interactional features of real
instructional exchanges? This study seeks to empirically address this question and provide
methodological guidance for the development and evaluation of generative educational corpora.

3. Methods

3.1 Participants and experiment procedure

The study involved fifth-grade students from an elementary school in Xundian County, Yunnan
Province, China. Undergraduate and graduate volunteers from a university in eastern China
conducted an eight-week mathematics tutoring program in a one-on-one online format. Prior
to the tutoring sessions, the volunteers received specialized training in the Socratic
questioning technique, aiming to foster students’ ability to construct their own understanding
frameworks and develop independent problem-solving skills, rather than simply providing
direct answers. The tutoring content primarily covered two sections of the elementary school
mathematics curriculum: “Numbers and Algebra” and “Geometry and Graphics.” All
teacher–student interactions during the experiment were recorded via the Tencent Meeting
platform, which automatically generated transcripts of the recorded sessions. During data
processing, any transcription errors or disfluent expressions were refined sentence by
sentence using GPT-based text polishing. After data cleaning and screening, 49 dialogues
corresponding to mathematics problems were retained as the final research corpus.

3.2 Simulation Data Generation

To explore the differences between real conversations and AI-simulated conversations in
terms of teaching methods and dialogue structures, while minimizing the influence of problem
statements and solution outlines on the dialogue itself, this study first extracts the tutoring
question from the original dialogue and distills the core tutoring approach. This serves as both
the basis and the constraints for the simulation, preventing the dialogue from diverging
excessively (Figure 1). Using the question and core tutoring approach as inputs, the study
adopts the tripartite simulation framework proposed by Liu et al., (2024) in SocraticLM, which
has been shown to generate data suitable for fine-tuning large language models to enhance
their Socratic questioning capabilities, making it a valuable methodological reference.

In this framework, three AI agents collaboratively simulate a Socratic teaching scenario:
(1) the Teacher agent generates heuristic questions based on predefined instructional
objectives; (2) the student agent responds according to individualized knowledge gaps; and (3) the
Dean agentmonitors dialogue quality, determines turn-taking, and ensures instructional coherence.
The entire simulation is implemented on the GPT-4o model using a predefined prompt template.

3.3 Coding process and framework

This study is based on the IRF (Initiation-Response-Feedback) discourse framework
proposed by Sinclair & Coulthard (2013), a widely recognized model for analyzing dialogue in
educational settings. To systematically examine one-on-one dialogue quality, we adopted a
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refined coding scheme for each dimension of the IRF model (Table 1). The sub-categories for
both the Initiation (I) and Feedback (F) dimensions are adapted from the six teacher
scaffolding types identified by Van de Pol et al., (2010). Based on our research approach, we
conceptualize three of these behaviors—Questioning (I-Q), Hints (I-H), and Modeling
(I-M)—as typically occurring when the teacher initiates a dialogue, thus placing them in the
Initiation dimension. The Response (R) dimension, in turn, builds upon Yang et al. (2023)’s
hierarchical classification, with an expansion to suit this study's context, which includes a
Simplistic Response (R-SR), a Factual Response (R-FR), an Open-ended Response (R-IO),
and the newly added Refusal to Respond (R-RR). Finally, the Feedback (F) dimension
includes the remaining three scaffolding types—Feeding Back (F-F), Instructing (F-I), and
Explaining (F-E)—which are used to code the teacher's follow-up actions to a student's
response. This comprehensive coding framework provides a detailed analytical tool to explore
the complexity and quality of one-on-one dialogue within the present study.

3.4 Data analysis

This study first applied the coding scheme from Section 3.3 to both the human-to-human
dialogues collected in Section 3.1 and the AI-simulated dialogues from Section 3.2. The
human-to-human dialogues were coded independently by two human researchers, achieving
a high inter-rater reliability with a Cohen's Kappa of 0.824. Subsequently, the expert-coded
human dialogue data were used to fine-tune a BERT model for the purpose of automatic
dialogue coding. This fine-tuned BERT model was then used to automatically code the
AI-simulated dialogues, with manual verification to ensure accuracy.

To uncover the underlying differences between the AI-simulated and human-to-human
dialogues, a multi-faceted analytical approach was employed. Initially, we used descriptive
statistics and paired-samples T-tests to analyze the structural differences between the two
dialogue sets at the IRF level, followed by a deeper analysis of the differences in cognitive
depth within the sub-dimensions. Beyond these comparative statistics, the study further
utilized Epistemic Network Analysis (ENA) to provide a more profound insight into the
structural disparities. ENA is a novel method for quantifying and visualizing the relationships
between elements within a discourse. In this study, we used the ENA Web Toolkit to perform
network analysis on both dialogue sets, aiming to capture the potential differences in
interaction patterns between AI-simulated and human dialogues at a macro-structural level.

4. Results

4.1 RQ1：Dialogue Structural Differences

To explore the structural differences between AI-simulated and authentic human dialogues,
we conducted a quantitative analysis across two key dimensions: utterance length and the

Figure 1. Workflow of dialogue simulation
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composition of instructional behaviors. Our analysis, as illustrated in Figure 2 (left), reveals
significant structural disparities in utterance length between AI and human dialogues. Highly
significant differences were found in both teacher and student roles (p<.001). Specifically,
authentic human dialogue exhibits a dynamic and asymmetrical pattern of utterance length
between different roles, whereas AI dialogue demonstrates a more uniform and standardized
characteristic. Human teachers tend to produce longer utterances, while human students
respond with very short turns, a pattern less pronounced in the AI-simulated interactions.

The composition of instructional behaviors, shown in Figure 2 (right), further highlights
these differences. The proportion of Initiation (I) codes was significantly higher in human
dialogues compared to AI (T=−2.39, p<.05). This suggests that human tutors are more
inclined to use directive and guiding language, as indicated by the higher distribution of 'I'
codes for the 'human' condition. However, no statistically significant differences were
observed in the proportions of Response (R) and Feedback (F) codes. This indicates that the
AI system is effective at replicating these fundamental interactive and evaluative behaviors, as
the distributions for 'R' and 'F' codes appear largely similar between human and AI.

These findings suggest that while AI dialogue can successfully mimic certain human
interaction patterns, as seen in the 'R' and 'F' code proportions, it still fundamentally differs in
discourse granularity and the proactive nature of instructional initiation. Authentic human
tutors exhibit a unique capacity for proactive guidance through longer and more frequent
initiations, while AI dialogues tend to adopt a more reactive and standardized communication
style. Nevertheless, the AI system's performance in basic interactional functions provides a
clear direction for future improvements, particularly in enhancing the richness and diversity of
its directive behaviors to better align with human tutoring strategies.

To gain a more granular understanding of the source of these differences, we conducted
a paired samples t-test on the subtypes of instructional behaviors, with the results shown in
Table 2. This detailed analysis reveals fundamental distinctions in the specific behavioral
patterns between AI and human dialogues, moving beyond mere proportional differences.

First, regarding dialogue initiation, human tutors are more inclined to guide students
through a higher frequency of Questioning (I-Q) (p<.01). This behavioral pattern reflects a

Table 1. IRF-based conversation coding framework

Type Subtype Definition Example

I-Initiation

I-Q
Questioning

Involves asking students questions that
require an active linguistic and cognitive
answer.

What is 5+3? How did you get the
answer?

I-H Hints
The teacher provides clues or
suggestions to help the student
progress, without giving the full solution.

We need to find the grandfather's age.
We know the age difference between
the father and Tom, and between the
grandfather and the father. How can
we use this information?

I-M Modeling The process of offering a behavior for
imitation, such as demonstrating a skill.

I will show you how to solve this
vertical equation.

R-Respons
e

R-RR Refuse
to Response Refusing to answer or remaining silent. "I don't know," or silence.

R-SR
Simplistic
Response

A simple answer that lacks depth. "Yeah," "mm," or "okay."

R-FR Factual
Response

An answer that is factual, based on
memory, or explanatory.

The sum of a triangle's interior angles
is 180 degrees.

R-IO
Interpretive/O
pen-ended

A thorough answer that includes
interpretation or explanation.

I think we should first find the location
of 1, and then calculate the
coordinates for 1/3.

F-Feedback

F-F Feeding
Back

Providing information to the student
about their own performance. "Good job," or "That's smart."

F-I Instructing
The teacher tells the student what to do
or explains how/why something must be
done.

Tom is 5, and the age difference is 30,
so the father is 35. The grandfather is
30 years older, so his age is 35+30.

F-E Explaining The teacher provides more detailed
information or clarification.

The sum of a triangle's angles is 180°.
Since the other two angles are 30°
and 60°, the third angle must be 90°.
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common cognitive scaffolding strategy in human teaching, where continuous inquiry, rather
than direct information delivery, is used to facilitate students' active knowledge construction. In
contrast, although AI showed no significant difference from humans in behaviors like Hints (I-H) and
Modeling (I-M), its deficiency in questioning may render its deep cognitive guidancemore passive.

Second, these differences are mirrored in student response behaviors. Human students
more frequently provide Factual Responses (R-FR) (p<.001), which might stem from the
human tutor’s persistent questioning strategy that prompts students to recall and articulate
factual knowledge. In stark contrast, AI students are more prone to giving Simplistic
Responses (R-SR) (p<.001) and Refused Responses (R-RR) (p<.05). This pattern may
suggest that AI students' design favors providing direct, concise answers when possible, or
adopting a "refusal" strategy when a full response is not feasible, unlike human students who
attempt to organize facts to construct a response.

Finally, in feedback behaviors, AI demonstrates a unique set of strengths and limitations.
AI tutors show a significant advantage in Explaining (F-E) (p<.001), with a much higher
proportion than human tutors. This is likely an inherent capability of AI as an information
generation system, allowing it to efficiently and systematically produce detailed explanations.
In contrast, human tutors more often provide general Feedback (F-F) (p<.01), which may
include immediate, unstructured evaluations of a student's effort or overall performance—a
nuance AI currently struggles to fully replicate. These fine-grained analyses suggest that the
differences between AI and human dialogues are not coincidental but are driven by
fundamental distinctions in their underlying mechanisms and behavioral strategies. AI
dialogue leans more towards information transfer and task completion, while human dialogue
is more focused on cognitive guidance and social-emotional interaction.

4.2 RQ2：Comparison of Cognitive and Interactional Patterns

To investigate the deeper structural differences in interactive patterns between AI-simulated
and authentic human dialogues, we employed Epistemic Network Analysis (ENA). This
analysis aims to reveal how different instructional behaviors co-occur and the underlying
cognitive and interactional patterns they collectively constitute. Our ENA results (as shown in
Figure 3) reveal a significant structural divergence between the two groups. The centroids of
the human and AI dialogue networks are significantly separated along the X-axis of the ENA
projection space (t(84.35)=9.33, p<0.001, d=1.97), while no significant difference was found
along the Y-axis. This suggests that the fundamental distinction between AI and human
dialogues primarily resides within a single, core dimension.

A closer examination of each group's network structure reveals that the X-axis
represents the di f ference between quest ion-centered, guided instruct ion and
explanation-centered, information-transfer instruction. The human dialogue network (red
network) is structured around a strong connection between I-Q (Questioning) and R-FR
(Factual Response) (as shown in Figure 4, left panel). This portrays a typical "question-factual
response-feedback" teaching cycle, reflecting a pedagogical style where human tutors use
Socratic questioning to drive knowledge retrieval and construction. In contrast, the AI dialogue
network (blue network) exhibits a distinctly different pattern. The strongest connections are
found between F-E (Explaining) and R-SR (Simplist ic Response), depicting an

Figure 2. Comparison of dialogue structural characteristics between human and AI-simulated tutoring sessions
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"explanation-simplistic response" loop (as shown in Figure 4, right panel). This suggests that
the AI tutor's strategy leverages its strength as an information repository, providing detailed
explanations to deliver information, while the student responds with brief, confirmatory utterances.

In summary, these findings collectively address our research question: the interactional
patterns of AI-simulated dialogues fundamentally differ from those of authentic human
dialogues. Human dialogue is more guided and interactive, promoting cognitive construction,
whereas AI dialogue is more information-transfer-oriented and task-driven, focused on
efficient information exchange. The ENA results not only confirm this difference but also precisely
reveal the distinct cognitive and pedagogical pathways underlying these twomodes of dialogue.

5. Discussion & Conclusion

Our analysis reveals a fundamental difference in the interaction patterns of human and AI
tutors. Human tutors predominantly utilized a "question-response-feedback" loop, a method
consistent with Cognitive Scaffolding theory that actively guides students in knowledge
construction and promotes critical thinking. In contrast, the AI agent adopted an
"explanation-simplistic response" pattern, functioning more as an efficient information-transfer
mechanism than a pedagogical partner. This suggests that while current AI can achieve
conversational fluency, it struggles to replicate the deeper, heuristic interactions essential for
robust learning.

The main contributions of this work are threefold. First, we provide quantitative evidence
that AI and human tutoring dialogues differ significantly in their behavioral composition and
interactional structure. Second, we clarify the distinction between the "cognitive guidance"
pathway characteristic of human tutors and the "information transfer" pathway currently
favored by AI. Third, this study offers an empirical framework for designing and evaluating future
AIED systems, advocating for a shift in focus frommere fluency to pedagogical authenticity.

These conclusions, however, should be considered in light of key methodological
limitations. Our human tutor sample consisted of university students rather than seasoned
educators; the simulated student agent did not capture the cognitive diversity of real learners;
and the AI's behavior is an entangled product of the underlying LLM and our specific agent
design. These constraints directly inform directions for future research. Subsequent work
should extend this analysis to expert educators, incorporate more varied learner profiles into
simulations, and explore novel training methods that enable AI to better emulate the complex
scaffolding and heuristic behaviors found in authentic human dialogue.
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