Jiang, B. et al. (Eds.) (2025). Proceedings of the 33™ International Conference on Computers in Education. Asia-
Pacific Society for Computers in Education

Support System for Understanding Class
Design with Reusability and Maintainability

Kazuma KUWADA?® & Tomoko KOJIRI
@Graduate School of Science and Engineering, Kansai University, Japan
®Faculty of Engineering Science, Kansai University, Japan
*k057907 @kansai-u.ac.jp

Abstract:

In object-oriented programming (OOP), creating class designs with high reusability and
maintainability is important. Structure with high reusability and maintainability can be
created by using hierarchical structures based on inheritance. Hierarchical structure
can be created by defining abstract classes that abstract similar classes. However,
OOP beginners may struggle to identify which similarities to abstract to achieve
reusability and maintainability, potentially preventing them from creating such structure.
This research aims to teach OOP beginners to recognize similarities between classes,
enabling them to create structure that satisfy reusability and maintainability
requirements.

Keywords: object-oriented programming, reusability, maintainability, similarity
between classes

1. Introduction

In object-oriented programming (OOP), it is important to create class design that is highly
reusable and maintainable. Class design with high reusability and maintainability can be
achieved by creating hierarchical structures using inheritance between classes. To
understand and leverage the benefits of OOP, it is important to understand the relationships
between classes that should be set in a hierarchical structure.

A study (Takekawa & Nakabayashi, 2024) aimed at helping students understand the
benefits of object-oriented languages proposed a learning method that fosters understanding
of the causal relationship between fundamental object-oriented concepts and their benefits.
This was achieved by having students compare object-oriented and procedural languages,
consider behavior in extension tasks, and reflect on the role of polymorphism. This approach
uses a pre-existing hierarchical structure for learning. Thus, although learners are able to
understand the benefits of expansion in relation to class behavior, it is not guaranteed that
they themselves to create structures that leverage these benefits.

A hierarchical structure can be created when multiple classes share common attributes
or methods. In creating hierarchical structure, two types of classes are created; one is called
superclass that holds only the common elements and the other is called subclass that holds
only the unique elements. The superclass is regarded as the abstraction of the subclasses.

To introduce such abstraction into design, it is necessary to understand the common
elements of classes. Research exists that aimed at extracting common elements of classes
(Wang, Li, Ma, Xia & Jin, 2020). This research extracts the common methods by representing
their codes as a graph structure and compares them. This research focuses only on the
similarities of methods. However, in order to create the hierarchical structure of highly reusable
and maintainable, not only methods but only classes themselves need to be examined. In
addition, in this research, the system extracts the similarity so that the programmer is not
trained to create the hierarchical structure. This research aims to teach OOP beginners
(learners) to recognize similarities between classes that can get benefit from creating the
hierarchical structure, enabling them to create structure that satisfy reusability and
maintainability requirements.

2. Approach
2.1 Structure with Reusability and Maintainability, and Similarity between Classes

High reusability means that existing code can be reused. High maintainability means that
changes can be made easily. In OOP, a good structure is one in which common process
between classes is implemented in the superclass, and classes that call subclasses refer only
to the superclass type. By implementing common process in a superclass, it becomes
reusable when adding a class that contain the same process. In addition, since the class that
calls the common process only refer to the superclass, to add a class that contain the same
process does not make any change to the calling class, which leads to high maintainability.

Here we show the example of reusable and maintainable. Let's assume PDFExporter
class and CSVEXxporter class have common process export that calls formatData and called
by Client class. The concrete process of formatData is different between them. For such
classes Figure 1 is the reusable and maintainable structure.

To enhance reusability through abstraction, methods with similar processing
sequences must be defined across the classes being abstracted. Implementing such methods
in the superclass improves reusability. To enhance maintainability, the relationship with the
calling class (dependency, aggregation, etc.) must be consistent. Referencing them as similar
types improves maintainability. In this study, these are considered conditions for reusability
and maintainability.

@ FileExporter

«use» © Client

o useFile(file_exporter: FileExporter): void

o export(data: Any): void
o formatData(data: Any): str

VAR

© PDFExporter © CSVExporter

| e formatData(data: Any): str | e formatData(data: Any): str

Figure 1. Highly Reusable and Maintainable Structure

2.2 Activities for Learning Similarities between Classes

Learners who mistakenly select class groups that can form hierarchical structures do not
understand that the resulting hierarchy does not enhance reusability or maintainability. To
make them verify whether the created hierarchical structure possesses reusability and
maintainability, it is effective to assign tasks involving reuse and maintenance of created class
structure. In this study, we provide learners with a set of classes that do not use hierarchical
structures and have them create hierarchical structures. Subsequently, we assign extension
tasks based on unrecognized similarities. By executing the extension tasks, we expect
learners to notify whether the hierarchical structures they created possess reusability and
maintainability.

3. Class Similarity Learning Support System

We developed a system as shown in Figure 2 enabling learner to perform the learning activities
described in Section2.2. In this system, first, the learner creates abstract design of the given
non-abstracted class diagram. Next, the system judges whether the abstracted class satisfy
similarity conditions and presents an extension task according to the dis-satisfied conditions.
If the condition for reusability is not met, it presents a task for adding a class with a set of
methods identical to those possessed by an abstracted class. In order to cope with the task,
the learner must describe all the methods so that the learner recognizes that his/her design is
not highly reusable. If the condition for maintainability is not met, it presents a task for adding
a class with relationships similar to those between the abstracted class and its calling classes.
In order to cope with the task, the learner must implement each class in a form that cannot be

referenced as a superclass, which makes him/her recognize that his/her design is not a highly
maintainable. After completing the extension task, the learner receives feedback that indicates
the degree of improvement achieved through abstraction and suggests whether modifications
are necessary.

Figure 3 shows the interface for creating the abstract design. This interface consists of
a class diagram display area and a method display area. The class diagram display area is
for editing the class design and the method display area is for modifying the method as the
flower chart form. When the system starts, the class diagram of the non-abstracted design is
shown in the class diagram display area. The learner can create abstract class by pressing
the class add button. Additionally, learner can edit a class's fields and methods by pressing
the button in the upper-right corner of that class. When the learner clicks a method name, the
method's processing sequence is displayed in flowchart format in his/her selected half of the
split of the method display area. When the learner clicks a processing node where he/she
wishes to add further processing, the processing addition screen appears, allowing him/her to
add processing by describing the desired operation. When the learner presses the complete
button, the extension task appears at the top of the screen and the learner is asked to modify
the class diagram using the same interface. When the learner presses the complete button
again, feedback is displayed.

Non-abstract design
Abstract design
. _ Extension task

Extended design

Degree of
reuse and maintenance
—

System
Figure 2. Class Similarity Learning Support System

=S| ss add button & Complete button

Class diagram |k _ "] :
display area
display area
Figure 3. Interface for Creating Abstract Class
4. Conclusion

In this paper, we proposed a system designed for beginners in object-oriented programming
(OOP) that teaches them to learn highly reusable and maintainable structures by learning
similarities between classes. Our future work is to conduct experiments evaluating the
effectiveness of the proposed system.

References

Takekawa, N., & Nakabayashi, K. (2024). A learning method for novice learners on object-oriented
programming focusing on its extendability. Transactions of Japanese Society for Information and
Systems in Education, 41(3), pp. 224-239. (in Japanese).

Wang, W., Li, G, Ma, B., Xia, X., & Jin, Z. (2020). Detecting code clones with graph neural network and
flow-augmented abstract syntax tree. arXiv preprint arXiv:2002.08653.

