Jiang, B. et al. (Eds.) (2025). Proceedings of the 33" International Conference on Computers in Education. Asia-
Pacific Society for Computers in Education

Proposal of Visualization for Test
Execution Results of Programming
with Automated Testing

Raiya YAMAMOTO®, Keita MIYAGI?, Yasuhiro NOGUCHIF?,
Satoru KOGURE?, Koichi YAMASHITAP & Tatsuhiro KONISHI?
@Faculty of Informatics, Shizuoka University, Japan
bFaculty of Business Administration, Tokoha University, Japan
*ryamamoto@inf.shizuoka.ac.jp

Abstract: In recent years, automated testing has been used in many software
developments. Automated testing has advantages such as the early detection of errors
through continuous test execution. However, research has reported that software
testing is difficult for novices who have not yet acquired basic programming skills.
Previous research has observed that even novice learners can perform coding
activities and identify bugs in a function in an environment where automated testing is
already prepared, but they could not identify the line that has defects in a function and
could not eliminate the defect. This study proposes a learning support tool to help
novice learners learn how to identify defects in a function using automated testing in
programming exercises. Result of evaluation indicated that the proposed tools can help
learn a method for identifying the location of defects.

Keywords: Programming education, learning support tool, automated testing

1. Introduction

In recent years, automated testing has become increasingly common in software development
because of its ability to detect errors early through continuous execution and function-specific
test designs (PractiTest, 2022). This approach helps narrow the scope of the bugs based on
failed test cases. However, Edwards (2004) stated that software testing remains difficult for
novice learners who have not yet acquired basic programming sKkills.

Yamamoto et al. (2024) explored the use of an automated testing environment for
novices and found that, while they identified buggy functions, they struggled to locate the exact
lines causing defects and were unable to fix them. For teaching debugging techniques,
Yamamoto et al. (2018) proposed a systematic debugging process based on principles from
Why Programs Fail? (Zeller, 2009) and the art of software testing (Myers et al., 2012),
including scientific debugging, reproduction problems, deduction, and backtracking. This
process involves executing functions with parameters that trigger defects, tracing execution
paths, identifying faulty behaviors, and modifying the code while observing the effects. It is
suggested that this method of tracing the execution path and identifying the scope of defects
was effective even for novice learners. Based on the above, this study proposes a learning
support tool to help novice programming learners learn how to identify defects in a function
using automated testing in programming exercises.

2. Learning Support Tool with Visualization for Results of Automated Testing

For learners to acquire the ability to locate defects in an automated testing environment, they
need to experience a series of processes of selecting a single test case, reviewing its
execution path, and limiting the extent of the defect by overlapping the execution path
reviewed in multiple tests. However, it is expected that novice learners may have difficulty

performing the following tasks: “confirming whether the assumed execution path is correct or
not (Task 1),” “checking the state of superimposing the execution paths (Task 2),” “observing
how the candidate ranges changed by superimposing a single test execution path (Task 3),”
and “interpreting and making good use of the test result for debugging after a sufficient number
of test execution paths have been overlaid (Task 4).” To support novice learners in executing
the above tasks, we designed a learning support tool with the following functions: For Task 1:
The execution path selected by the learner for each test is shown (Function 1). Supporting
Task 2: The overlaid execution paths of the tests selected by the learner are displayed
(Function 2). Assisting Task 3: The superimposed execution paths of the previous task were
displayed (Function 3). Encouraging Task 4, hints were displayed according to the overlapping
status of the execution paths (Function 4).

Figure 1 presents an overview of the developed learning support tool. The learning
support tool was developed as an extension of VSCode, providing support for Java.

Color coding for portion i
Coloring for each test case

Successful Test
Failure test

Coloring for superimposed
multiple test results

Executed only in the successful test

Executed only in the failed test
Executed in the both test cases

Figure 1. Overview of the Learning Support Tool

The support tool comprises three areas. The file selection area (A in Figure 1) functions as a
file browser. The test selection area (B in Figure 1) was used to select the test case.
Information regarding success or failure was displayed behind the name of each test. The
green check mark indicates that the test was successful, and the red cross mark indicates that
the test failed. Circled numbers indicate the order of test execution. The visualization area (C
in Figure 1) shows the results of the executed tests and consists of three portions.

In portion i, independent bars describing the execution path that learners select are
displayed. The numbers in each bar correspond to the numbers of test selection orders
displayed in the test selection area. This figure shows the results of each test (achieving
Function 1). The background colors of each line in the source code in portion ii were changed
according to the results of the executed tests (achieving Function 2). Portion iii shows the
previous color coding of the source code in the previous selection state (achieving Function
3). In addition to these visualizations, hints for interpreting the current state are displayed
(achieving Function 4). D in Figure 1 represents the button for test execution.

3. Evaluation and Conclusion

Experiments are conducted to evaluate the effectiveness of the proposed system developed
in this study. Nine undergraduate informatics students with basic Java knowledge, but limited
experience in automated testing, were recruited for this study. They were divided into two
groups based on their pretest scores: one group used the support tool (five students), while
the other did not (four students). The evaluation included a pre-test, exercise, post-test, and
questionnaire. The pre-test assessed the understanding of four features: selecting effective

test cases, identifying defect locations in the source code, understanding single test execution
paths, and interpreting multiple test execution paths. The participants were provided with
specifications for the source code containing defects, test codes, and test results. The post-
test followed the same format as the pre-test, but used different content. As in the pre-test,
the same materials were provided in the exercise, and the participants were asked to debug
the code to aim for a state where all tests succeeded. Before the exercise, the support tool
group received a tutorial on the use of the tool, while the control group received a tutorial for
generic test runner.

Table 1 shows the increase in scores from pre-test to post-test for both groups. In
parentheses, the pretest score is written on the left side of the slash, and the post-test score
is written on the right side. The scores on both tests were rounded to the second decimal place.

Table 1. Average score increase pre-test vs. post-test

Feature Assessed Allocation Group with Group without Point
of Marks the support tool the support tool Difference

Selecting effective 40 4.00 0.75 3.95
test cases (33.2/37.2) (35.0/35.8))
Identifying defect locations 40 8.80 -1.50 103
in source code (29.6 / 38.4) (33.0/31.5))
Understanding 50 7.40 -0.75 8.15
single test execution (39.6/47.0) (49.0/48.3))
Interpreting multiple 10 1.60 0.50 110
test execution paths (7.40/9.00) (8.75/9.25))

The results showed that the group with the support tool had higher scores than the group
without the tool. This suggests that the group that used the tool had a better understanding of
the method of locating defects using automated testing. However, the group that did not use
the tool tended to have higher pretest scores. Therefore, there is room for further discussion
regarding the results for the group without a learning support tool. In addition, this support tool
was designed specifically for debugging; therefore, it was not designed to allow learners to
design and describe their tests. In the future, it will be necessary to support an environment in
which learners can design and describe tests to support debugging in a more practical
environment.

Acknowledgements

This work was supported by JSPS KAKENHI, Grant Numbers JP22K12311 and JP23K17014.

References

Edwards, S. H. (2004). Using software testing to move students from trial-and-error to reflection-in-
action. Proceedings of the 35th SIGCSE Technical Symposium on Computer Science Education.
https://doi.org/10.1145/971300.971312

Myers, G. J., Badgett, T., & Sandler, C. (2012). The art of software testing (3rd ed.). John Wiley &
Sons.

PractiTest. (2022). The state of testing report 2022. https://www.practitest.com/assets/pdf/state-of-test
ing-report-2022v10.pdf

Yamamoto, R., Noguchi, Y., Kogure, S., Yamashita, K., Konishi, T., & Itoh, Y. (2018). Implementation
of a lecture package and a learning support system to teach systematic debugging to
programming learners who do hit-or-miss debugging, Transaction of Japanese Society for
Information and Systems in Education, 35(1), 21-37. (in Japanese)

Yamamoto, R., lwashimizu, R., Noguchi, Y., Kogure, S., Yamashita, K., & Konishi, T. (2024).
Consideration of programming learning activity under automated test environment. JSAI-
Technical Report SIG-ALST, 100, 83-88. (in Japanese)

Zeller, A. (2009). Why Programs Fail: A Guide to Systematic Debugging, (2nd ed.). Morgan Kaufmann
Publishers.

