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Abstract: Facial expression datasets play a foundational role in affective computing 
and emotion recognition. However, many rely on categorical emotion labels that may 
not reflect the true affective state captured in facial cues. The Valence–Arousal (VA) 
framework provides a dimensional alternative, mapping emotions along axes of polarity 
and activation. Despite its theoretical strengths, VA-based validation is rarely applied 
to large-scale facial datasets, raising questions about the fidelity of categorical 
annotations. This paper presents a systematic framework for auditing affective 
distributions in facial expression datasets through VA analysis. We evaluate two widely 
used datasets, DAiSEE and AffectNet, by estimating VA scores with two state-of-the-
art deep learning models, HSEmotion and EmoNet. Kernel density heatmaps and 
statistical measures, including mean valence, mean arousal, standard deviation, and 
90% coverage ellipses, are used to assess alignment with Russell’s Circumplex Model 
of Affect. Our findings reveal significant inconsistencies: DAiSEE’s engagement class 
and AffectNet’s fear class deviate substantially from their expected VA regions, while 
boredom and anger demonstrate more reliable clustering. These results expose 
systematic biases in dataset labeling that may compromise downstream affective 
models. By grounding dataset validation in continuous affective space, the proposed 
framework enhances transparency, supports ethical dataset design, and promotes the 
development of more robust and interpretable emotion recognition systems. 
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1. Introduction 
 
Facial expression recognition (FER) plays a central role in affective computing, supporting 
applications in education, mental health, human–computer interaction, and surveillance 
(Wang et al., 2022). Most FER systems are trained on large-scale datasets annotated with 
categorical emotion labels such as happy, fearful, or engaged (Ashwin & Guddeti, 2020). 
While these labels are convenient for classification, they fail to capture the continuous and 
nuanced nature of human affect, where emotions rarely fit neatly into discrete categories. 
 The Valence–Arousal (VA) framework offers a more expressive alternative by 
representing affect along two continuous dimensions: valence, which measures emotional 
polarity (positive to negative), and arousal, which measures activation level (calm to excited). 
This two-dimensional model, grounded in psychological research such as Russell’s 
Circumplex Model of Affect (Russell, 1980, Akpanoko et al., 2024a), enables a richer 
understanding of emotional states, including blended or ambiguous expressions that 
categorical models often overlook (Akpanoko et al., 2024b; Fonteles et al., 2024). 
 Despite its advantages, VA-based evaluation is rarely applied in dataset curation or 
validation. As a result, important questions remain unanswered: Do categorical labels in widely 



used datasets actually align with their expected valence–arousal distributions? If not, what 
biases or inconsistencies might these misalignments introduce into FER systems trained on 
them? In this work, we define such problems as distributional misalignments between 
categorical labels and their expected VA coordinates. This represents a form of label bias or 
annotation inconsistency: distinct from demographic or societal bias, but equally important, 
since systematic misalignment can compromise both the reliability and fairness of affective 
computing systems. 
 In this paper, we address these questions by introducing a multi-model auditing 
framework that projects categorical labels into VA space for validation. We focus on two widely 
used datasets: DAiSEE (Gupta et al., 2015), which models student engagement in e-learning 
contexts, and AffectNet (Mollahosseini, et al., 2017), a large-scale benchmark for facial 
emotion recognition. Using two state-of-the-art models for VA estimation — HSEmotion 
(Kollias & Zafeiriou, 2020) and EmoNet (Toisoul et al., 2021) — we estimate valence and 
arousal values for selected classes and compare their distributions against the zones 
predicted by Russell’s Circumplex Model. By generating valence–arousal heatmaps and 
computing distributional statistics, we reveal where dataset labels deviate from theoretical 
expectations. By grounding dataset validation in continuous affective space, our framework 
provides deeper insight into dataset quality and promotes the development of more reliable, 
interpretable, and ethically responsible emotion recognition systems. 
 
 
2. Related Works 
 
Early research in facial expression recognition has been dominated by categorical models of 
emotion, particularly Ekman’s six basic emotions (Ekman, 1992). While these categories 
provide a simple framework for annotation, they often fail to capture gradual transitions, 
blended states, and cultural variability in how affect is expressed. In contrast, dimensional 
models such as Russell’s Circumplex Model of Affect (Russell, 1980) represent emotions 
along two continuous axes—valence, describing the polarity of affect from positive to negative, 
and arousal, describing activation from calm to excited. This two-dimensional approach offers 
a richer characterization of affective states, yet relatively few facial expression datasets 
provide annotations in valence–arousal (VA) space. 
 Recent advances in deep learning have enabled direct estimation of valence and 
arousal from facial images. Models such as HSEmotion (Kollias & Zafeiriou, 2020) and 
EmoNet (Toisoul et al., 2021) predict continuous affective values rather than discrete 
categories and have been applied to tasks such as affect tracking, facial animation, and 
privacy-preserving transformations (Wang et al., 2022,). However, these approaches raise 
new questions about cross-model consistency and whether dataset labels align with expected 
VA distributions, since different models may yield divergent affective predictions for the same 
images. 
 Concerns about dataset quality and annotation reliability have been raised in several 
studies. Benitez-Quiroz et al. (2016) demonstrated the difficulty of capturing subtle 
expressions at scale, while Barsoum et al. (2016) showed that crowd-sourced labeling often 
introduces variability and disagreement. We follow prior work that has described these issues 
as annotation noise or label inconsistency (Ashwin et al., 2025; Ashwin and Biswas, 2024; 
Benitez-Quiroz et al., 2016; Barsoum et al., 2016). In this paper, we frame such systematic 
distributional misalignments as a form of label bias. These issues highlight what we define in 
this paper as label bias or annotation inconsistency—systematic misalignments between 
categorical labels and their expected VA coordinates. Unlike demographic or societal bias, 
this form of bias arises from inconsistencies in the affective content of labeled data itself, yet 
it can equally undermine the generalization and fairness of downstream models. 
 Visualization techniques offer an important opportunity to bridge this gap. Prior work in 
psychology and human–computer interaction has used heatmaps to illustrate affective 
distributions derived from physiological signals or self-reports (Kreibig et al., 2013). In machine 
learning, however, their application has been limited. By combining VA estimation with kernel 
density estimation (KDE) heatmaps, it becomes possible to expose distributional 



misalignments, reveal outliers, and highlight overlaps between emotion categories—providing 
a more transparent assessment of dataset fidelity. 
 
 
3. Methodology 
 
To examine affective inconsistencies and reveal potential bias in facial expression datasets, 
we designed an experimental pipeline that combines dataset curation, standardized 
preprocessing, valence–arousal (VA) estimation using multiple deep learning models, and 
comparative analysis against established psychological emotion theory. 
 We initially considered three widely used facial expression datasets—DAiSEE, 
AffectNet, and CK+ (Lucey et al., 2010). However, CK+ was excluded from the analysis due 
to its low resolution (24×24 pixels) and grayscale format, which make it unsuitable for modern 
VA estimation models that require high-resolution color images. The final analysis therefore 
focused on DAiSEE and AffectNet. From each dataset, we sampled 100 images per emotion 
class, yielding a total of 400 images across four categories. DAiSEE contributed the classes 
engagement (typically associated with positive valence and moderate arousal) and boredom 
(low valence, low arousal), while AffectNet provided fear (negative valence, high arousal) and 
anger (negative to moderately negative valence, high arousal). Ambiguous or co-occurring 
expressions were excluded to ensure greater label purity. This selection creates a controlled 
subset that spans a wide region of VA space, ranging from calm to intense emotional states. 
 Each image was standardized using Multi-task Cascaded Convolutional Networks 
(MTCNN) for face preprocessing. MTCNN detects the facial region, aligns landmarks such as 
the eyes and mouth, and outputs a normalized 256×256 face crop. This process reduces noise 
from pose, scale, and alignment variations, ensuring consistent input representation across 
datasets. When multiple faces were detected, the largest was retained under the assumption 
that it corresponded to the primary subject (Zhang et al., 2016; Ashwin & Guddeti, 2019) 
 Valence–arousal estimation was performed using two state-of-the-art pretrained 
models. The first, HSEmotion (Kollias & Zafeiriou, 2020), employs an EfficientNet-B0 
backbone trained on large-scale affective datasets and outputs continuous valence and 
arousal scores in the range (−1, 1). The second, EmoNet (Toisoul et al., 2021), is a 
convolutional architecture optimized for emotion recognition in video but applicable to still 
images, also producing continuous VA predictions in the range (−1, 1). For each sample, both 
models generated independent VA values, which were then averaged to reduce model-
specific variance. This dual-model approach provides more robust estimates of underlying 
affective states while mitigating biases introduced by individual training distributions. 
 To visualize affective distributions, we projected the VA outputs into two-dimensional 
heatmaps. Using kernel density estimation (KDE), we constructed smooth distributions for 
each emotion class and overlaid them on a fixed VA coordinate system. The x-axis represents 
valence v ∈ (−1, 1), while the y-axis represents arousal a ∈ (−1, 1). These visualizations allow 
direct comparison with Russell’s Circumplex Model of Affect, which specifies expected regions 
for each categorical label. 
 In addition to visual inspection, we computed quantitative statistics to characterize 
each distribution. For each emotion class and model, we report the mean valence µv and mean 
arousal µa, the corresponding standard deviations σv, σa, and a 90% coverage ellipse derived 
from KDE density contours. Formally, if (vi,ai) denote the valence–arousal coordinates of N 
images in a class, the mean values are given by: 
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and the spread of the distribution is captured by the covariance matrix (given below), 
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 From which the principal axes of the 90% confidence ellipse are derived. These metrics 
quantify not only whether a distribution is centered in its expected VA region but also how 
widely it spreads across other zones, providing a diagnostic for label noise and ambiguity. 
 Through this methodology, we create both a visual and statistical basis for assessing 
the fidelity of categorical labels against continuous affective representations. The combination 
of preprocessing, dual-model VA estimation, and KDE-based analysis enables a rigorous audit 
of dataset quality in affective computing. 
 
 
4. Results 
 
We assessed the affective fidelity of DAiSEE and AffectNet by projecting categorical labels 
into Valence–Arousal (VA) space using HSEmotion and EmoNet. Heatmap visualizations and 
statistical measures provide evidence of how closely dataset labels align with the regions 
defined by Russell’s Circumplex Model of Affect. 
 For DAiSEE, two emotion classes were examined: engagement and boredom. 
Engagement is theoretically associated with positive valence and moderate arousal, 
consistent with attentiveness and interest. However, the heatmaps generated from both 
HSEmotion and EmoNet reveal that many engagement-labeled images drift toward neutral or 
slightly negative valence and frequently occupy the low-arousal region. This suggests that the 
engagement class contains substantial label noise, with samples that do not express the 
intended affective state. In contrast, boredom aligns more reliably with its expected quadrant 
of low valence and low arousal. Both models produced concentrated heatmaps in this region, 
with only minor outliers drifting toward mildly positive valence or elevated arousal, likely 
reflecting states such as fatigue or passive observation. Taken together, DAiSEE 
demonstrates that boredom is consistently captured, while engagement suffers from 
substantial intra-class variance, highlighting the difficulty of annotating complex cognitive-
emotional states. 
 For AffectNet, we analyzed fear and anger, two high-arousal emotions with negative 
valence. Anger maps relatively well onto its expected quadrant, with both models producing 
clusters around the negative-valence, high-arousal region. A small subset of samples, 
particularly under EmoNet, drifted toward neutral valence, possibly reflecting determination or 
frustration, which share visual similarity with anger. Fear, however, showed far greater 
inconsistency. Although theoretically expected in the low-valence, high-arousal region, the 
heatmaps revealed significant spread across neutral and even slightly positive valence areas. 
These misalignments suggest annotation ambiguities and overlap with expressions of surprise 
or sadness, emotions that are difficult to disentangle visually. 
 
Table 1. Summary of Valence-Arousal Statistics Across Classes and Models 

Emotion 
Class 

Model Mean 
Valence 

Mean 
Arousal 

Std(V,A) 90% 
Coverage 

Engagement HSEmotion -0.015 0.270 0.1280 82.00% 
 EmoNet -0.415 0.375 0.2145 84.00% 

Boredom HSEmotion 0.077 0.143 0.1518 84.00% 
 EmoNet 0.007 0.013 0.0138 84.00% 

Fear HSEmotion -0.249 0.452 0.2823 82.83% 
 EmoNet -0.023 0.041 0.0257 82.83% 

Anger HSEmotion -0.249 0.452 0.2125 82.11% 
 EmoNet -0.044 0.066 0.0193 82.11% 

 
 Quantitative results reinforce these observations. Table 1 summarizes the mean 
valence, mean arousal, standard deviations, and 90% coverage of each class. Engagement 
exhibits relatively wide spread, with HSEmotion centering near neutral valence (µv ≈ −0.015) 
and moderate arousal, while EmoNet predicts more negative valence (µv ≈ −0.415) with higher 
variance. Boredom, by contrast, remains concentrated near low valence and arousal with 



limited variability across both models. Fear shows notable dispersion, with EmoNet producing 
near-neutral valence (µv ≈ −0.023) and low arousal compared to HSEmotion’s more negative 
valence (µv ≈ −0.029), reflecting the instability of this class. Anger, though also high-arousal 
and negative, maintains stronger alignment across both models, with similar mean values and 
relatively compact coverage. 
  

 
 

Figure 1. Valence Arousal Heatmaps of Engagement (left) and Boredom (right) Emotion 
from DAiSEE Dataset using EMONet 

 

 
Figure 2. Valence Arousal Heatmaps of Fear (left) and Anger (right) Emotion from 

AffectNet Dataset using HSEMotion 
 

Figures 1–4 illustrate the VA heatmaps for representative classes. Figure 1 and Figure 
3 shows engagement and boredom from DAiSEE using EmoNet and HSEMotion respectively, 
highlighting the dispersion of engagement samples versus the concentration of boredom. 
Similarly, Figure 2 and Figure 4 shows fear and anger from AffectNet using EmoNet and 
HSEMotion respectively. Anger from AffectNet, demonstrates alignment with its expected 
region while fear reveals broad distributional drift beyond the target quadrant. Together, these 
heatmaps provide visual confirmation of the statistical trends. 

 



 
Figure 3. Valence Arousal Heatmaps of Engagement (left) and Boredom (right) Emotion 

from DAiSEE Dataset using HSEMotion 
 

 

 
Figure 4. Valence Arousal Heatmaps of Fear (left) and Anger (right) Emotion from 

AffectNet Dataset using HSEMotion 
 
 Overall, the results show that boredom and anger are more reliably represented in VA 
space, while engagement and fear are prone to misalignment and drift. These findings expose 
systematic biases in categorical labeling and emphasize the importance of VA-based auditing 
for dataset validation in affective computing. 
 
 
5. Discussion and Implications 
 
The analysis highlights notable inconsistencies between categorical labels in widely used 
datasets and their actual Valence–Arousal (VA) distributions. While boredom in DAiSEE and 
anger in AffectNet clustered reliably in their expected quadrants, engagement and fear 
displayed substantial drift. Engagement often shifted toward neutral or negative valence with 
reduced arousal, and fear dispersed across regions associated with surprise or sadness. 



These findings indicate that categorical labels do not always map cleanly onto their presumed 
affective coordinates, raising questions about annotation fidelity. 
 From an educational perspective, such inconsistencies are particularly consequential. 
DAiSEE, for instance, was designed to model student engagement in e-learning 
environments. If its engagement labels are systematically misaligned in VA space, models 
trained on this data may struggle to detect true engagement or confuse it with unrelated 
affective states. This risks producing unreliable systems in educational contexts, where 
accurate modeling of learner behavior is critical. Incorporating VA-based dataset auditing into 
curricula can help students and practitioners recognize these pitfalls and develop a more 
critical understanding of dataset quality. 
 The ethical implications extend beyond education. In applications such as healthcare, 
security, or human–computer interaction, reliance on datasets with misaligned labels can 
propagate biases and reduce fairness. A model trained on noisy engagement or fear labels 
may overfit to ambiguous cues, leading to flawed inferences about a person’s emotional state. 
By contrast, VA auditing provides a systematic way to detect such biases before training. 
Comparing distributions against established psychological models, such as Russell’s 
Circumplex, acts as an early warning mechanism for misrepresentation and imbalance. 
 Taken together, these results demonstrate the importance of moving beyond 
categorical validation toward dimensional analysis. VA-based auditing not only improves 
interpretability but also enhances accountability in affective computing systems. As affect 
recognition technologies become increasingly integrated into sensitive domains, ensuring that 
datasets are affectively consistent is both a technical and ethical imperative. 
 
 
6. Conclusion and Future Work 
 
This study introduced a framework for auditing facial expression datasets by mapping 
categorical labels into Valence–Arousal (VA) space using multiple deep learning models. 
Applied to DAiSEE and AffectNet, the approach revealed that some emotions, such as 
boredom and anger, align closely with their theoretical VA regions, while others, particularly 
engagement and fear, exhibit significant drift. These findings underscore the risk of relying 
solely on categorical labels in affective computing and demonstrate the value of dimensional 
validation for improving dataset quality. By combining standardized preprocessing, dual-model 
VA estimation with HSEmotion and EmoNet, and kernel density–based heatmap analysis, the 
framework provides both statistical and visual diagnostics of dataset fidelity. This approach 
advances the field toward more transparent and interpretable evaluation of affective 
resources, offering a foundation for fairer and more reliable emotion recognition systems. 
 Future work will focus on automating the VA auditing pipeline to scale analysis across 
larger datasets, extending the method to temporal sequences for video-based emotion 
tracking, and examining how demographic attributes influence VA distributions. We also plan 
to explore VA-aware loss functions that can preserve affective fidelity during face de-
identification or privacy-preserving transformations. By addressing these directions, this line 
of research aims to support the development of affective computing systems that are not only 
technically robust but also ethically responsible. 
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