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Abstract: In this paper, we develop the learning system-DQuiz used in the C language 

programming course of college students, which can support students to use the mobile terminal 

to carry out programming exercises at any time. The study selected 74 undergraduates from a 

university and used DQuiz to conduct a one-semester after-class study. During this period, this 

study collected the learning behaviors of students in the after-class exercises, including doing 

new questions, view answers, view explanation, collect question, review, comment and like. 

Through statistical analysis and lag sequence analysis, it is found that the high-score group students tend to 

comment more frequently, and the behavior probability of reviewing after collecting questions 

and viewing the answer after a review is higher, while the low-score group students tend to do 

new questions after reviewing. Based on this, the study suggested that in the after-class 

exercises:1. Students should be guided to participate in peer learning and mutual help behaviors. 

2. Students should be guided to actively carry out knowledge review, and the teaching platform 

should push practice explanation to help students improve learn programming effects. 
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1. Introduction 
 

With the development of smart-phones, tablets, and wireless mobile communication terminals, mobile 

learning has increasingly become a free and convenient way to learn. In traditional programming 

learning, debug is proved to be an effective way to improve students' programming skills (Hwang, 

Shadiev, Wang, & Huang, 2012). However, in the mobile learning environment, it is not suitable for 

students to debug on tables. 

The data of learning behavior is the data generated by the learner during the learning process, 

such as the number of clicks, length of study, the progress of learning, and activity (Ji & Han, 2019), 

which can reflect the student's learning and learning characteristics (Zheng, Jiang, Yue, Pu, & Li, 2019). 

The method of analyzing these behavioral data is called learning behavior analysis that focuses on 

collecting traces that learners leave behind and using those traces to improve learning (Verbert & Duval, 

2012). It can help teachers to understand students’ learning situation and learning style, judge their 

enthusiasm for learning, position their roles, and provide important teaching intervention methods (Ji & 

Han, 2019). Studies have shown that in programming learning, learners’ behavior in programming is 

often considered as a key factor for assessing how effective a methodology is for learning programming 

skills (Del Fatto, Dodero, & Gennari, 2016). 

The mobile learning environment has a large amount of unstructured data that can store student 

learning behavior in the form of data records on the platform. Based on this, this study aims to collect 

college students' programming learning behaviors by using mobile practice Application, and to analyze 

college students' after-class practice strategies by analyzing the differences in behavior patterns of 

students with different learning levels, and to provide intervention strategies for teachers' after-class 

practice guidance. 
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2. Literature Review 
 

2.1 Programming learning 
 

At present, there are many learning platforms for assisting programming learning to enhance learning 

effects. Zingaro, Cherenkova, Karpova, and Petersen (2013) used the Python classroom response 

system, which teachers can use to give students questions during class. The types of questions include 

multiple-choice questions and code-writing questions. When the student submits the answer, the system 

will automatically provide immediate feedback on the type of error of the student according to a set of 

rules. The teacher can view the answers and feedback submitted by the student in real-time, so as to 

adjust his teaching plan in time. Students can gain the key skills of code writing through 

problem-solving skills and the ability to write code and debug code. Students and teachers can also 

communicate and discuss certain issues in the classroom. Hoffman, Lu, and Pelton (2011) used a 

web-based quiz system c-doku to provide students with a large number of code snippets, allowing 

students to fill in the input and output by reading the code. The system automatically checks the solution 

to provide feedback, which improves the student's code reading ability. The learning platform built by 

Basu, Biswas, and Kinnebrew (2017) provided students with programming blocks (e.g., conditions and 

loops) and hypertext resources (e.g., science books and programming guides). The platform let students 

practice conceptual concepts such as abstraction and decomposition by constructing conceptual models 

and computational models. The system also provides multiple-choice exercises, instructor guidance and 

suggested resource pages. 

Most of these platforms provide students with questions, answers, communication, and other 

learning resources. At the same time, from the application scenarios of these teaching platforms, 

researchers pay more attention to learning or phased tests of the course, and rarely apply them in 

after-class exercises. In fact, after-class exercises are an important part of programming learning. 

After-class exercises can improve learning effects through test effects. Test effect means that taking the 

same time to test the learning materials that have already been learned, instead of repeating the learning, 

the learning effect of the material will be better. 

In most universities in China, the programming course hours for non-computer majors are usually 

2 to 4 hours per week. The first two hours are taught by the teachers, and the last two hours are 

programming exercises by students. However, it is not enough to practice only by the time of the class. 

Students not only have to practice new knowledge but also review and consolidate existing knowledge. 

This requires students to spend more time and practice a lot under the class. Therefore, the study of 

students' after-class programming practice strategies is of great value in improving students' 

programming ability. 

 

2.2 Learning behavior analyze 
 

learning behavior analysis focuses on collecting traces that learners leave behind and using those traces 

to improve learning (Verbert & Duval, 2012). The learning behavior analysis method has been initially 

applied to programming learning and has achieved some results. For example, by recording the 

information search behavior of the programming learners on the online discussion forum, it is found 

that the general programming learners indeed seek for information from discussion forums by actively 

searching and reading progressively according to course schedule topics. But compared to novices, 

advanced students consistently perform query refinements, examine search results and commit to 

reading (Lu & Hsiao, 2017). By recording the six types of learning behaviors in collaborative 

programming learning activities including completely independent, self-improving using, performing 

poor without, confident after, imitating, plagiarizing, it is found that learning behavior has a certain 

relationship with academic achievement(Hwang, Shadiev, Wang, & Huang, 2012). 

A major obstacle to applying learning behavior analysis methods in the programming domain is 

the lack of meaningful observable actions for describing the students' learning process (Lazar, Sadikov, 

& Bratko, 2017). The learning behaviors associated with programming learning found in current 

research usually include the total amount of learners' exercises, the number of correct and wrong 

attempts, and the scores of exercises. For example, Spacco, Denny, Richards, Babcock, Hovemeyer, 

Moscola, and Duvall (2015) collected the number and percentage of students’ try and practice, the 
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number and the percentage of submission exercises from the platform of the CloudCoder novice 

programming exercise. It was found that the more times students try to practice, the better the ability of 

students’ programming. Norris, Barry, Fenwick, Reid, and Rountree (2008) used the ClockIT toolkit to 

collect the event of students’ project open or close events, package open or close events, compilation 

success, compilation error, compilation warning, invocation, file change or delete. It was found that the 

percentage of compilation errors and the type of compilation errors appear to relate to the student s 

performance on the project. Edwards, Snyder, Pérez-Quiñones, Allevato, Kim, and Tretola (2009) used 

the web-CAT automated scoring programming exercise platform to collect students’ number of 

Submissions, time of the first submission, time of last submission, total elapsed time, and amount of 

code written. It is found that the first and last submissions of the high score students are earlier than the 

low score students.  

Combined with the common functions of the programming learning platform, it can be found that 

there are more researches in programming learning itself, but other factors such as feedback, monitoring, 

and socialization in the programming learning process will also have an impact on learning. Therefore, 

reviewing answer, viewing explanation and other helpful feedback behaviors, collecting, review and 

other self-monitoring behaviors and comments, likes, and other social behaviors in the process of doing 

the new questions, are worth further exploration. Analyzing these behaviors will help to improve the 

student's programming learning with the exercises, especially to determine the sequence relationship 

between these behaviors, and to provide appropriate support strategies at the right time. 

 

 

3. Research design 
 

3.1 Research Platform  
 

The study selected the mobile application DQuiz (Daily Quiz) for programming learning (Zhang, Li, 

Zhou, & Chen, 2019). The application supports students to conduct multiple-choice exercises after class 

and collects various types of programming learning behaviors. The core functions of the system are 

daily exercises, viewing answers, viewing explanation, collecting question, comment and like.  After 

the student submits the answer, the system will immediately give correct and incorrect feedback. 

Students can only continue to choose whether to view the correct answer or view the explanation after 

submitting an answer. Students can also collect the title, and the collected questions will be 

automatically generated into the collection area. Students can view the questions in the collection area 

at any time. The collection question is a way of marking the question, which is convenient for the 

student to view the question next time. 

 

3.2 Research Data and Method 
 

In order to gain a deeper understanding of how students learn, especially if there is a difference in 

learning patterns. This study used lag sequence analysis to analyze students' learning behavior. Lag 

sequence analysis was proposed by Sackett (1978) to explore human behavior patterns by analyzing the 

significance of a behavior occurring after another behavior. This study encodes students' behaviors 

during the practice process, including seven behaviors, namely, doing new questions, reviewing, 

reviewing answers, viewing answer analysis, collecting questions, comment and like. The specific 

behavioral descriptions are shown in Table 1. 

 

Table 1 

Post-class practice behavior description 

Behavior Encode Description 

New Questions NP Students click the <Submit> tab to practice a 

new question. 

View Answers VA Students click the <View Answers> tab to view 

a question’s answer. 

View Explanation VE Students click the <View Answers> tab to view 
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an explanation of a question. 

Collect Question CQ Students click the <Collect Question> tab to 

collects a certain topic. 

Review RE Students click the <Submit> tab to practice the 

question again. 

Comment CM Students click the <Comment> tab to ask 

questions or comments on a topic. 

Like LK Students click the <Like> tab to like a 

comment. 

 

 

3.3 Teaching Experiment  
 

The study selected 74 freshmen from a university participating in the C language programming course, 

including 27 boys and 47 girls. These students are non-computer majors, which have no experience in 

programming. All students receive the same teacher's teaching at the same time and complete the same 

required after-class assignments. All students complete their studies in a natural state. 

 

 

4. Result 
 

4.1 Basic Situation  
 

According to the final grades, the study divided the first 27% and the latter 27% of the students into 

high-score group and low-score group to study the differences in the behavioral patterns of the two 

groups of students. There were no significant differences between the two groups in terms of the 

number of new questions, online learning time, and programming basics (5-point scale). 

 

Table 2 

Student basic situation table 

 M T 

Low-score group High-score group 

Pre-test (programming basics) 1.64  2.27 1.761 

Number of  new questions  223.25 224.70 1.237 

Online learning time 10.71h 15.81h 1.640 

Final exam score 59.05 94.51 14.018*** 

Number of exercises  22.15 30.06 1.646 

 

 

4.2 Programming Learning Behavior Frequency  
 

From the frequency of the behavior, high-score group students and low-score group students have no 

significant difference in the frequency of reviewing, viewing answers, viewing explanation and 

collection. According to the frequency of comments, the high-score group students were significantly 

higher than the low-score group students (p>0.05). Therefore, simply commenting and liking in the 

multiple-choice questions can help improve the learning effect. The frequency of other learning 

behaviors is not obvious, even on viewing answers and viewing the analysis of answers, low-score 

group students are higher than high-score group students. 
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Table 3 

Independent sample t-test analysis of learning behavior frequency by knowledge score 

Behavior frequency M Final exam 

score 

Low-score 

group 

High-score 

group 

T 

New Question 65.3 70 0.193 

View Answer 12.05 26.15 2.187* 

View Explanation 61.7 41.8 -1.632 

Collect Question 78.25 56.1 -1.757 

Review 20.6 28.3 1.394 

Comment 65.3 70 0.193 

Like 12.05 26.15 2.187* 

 

 

4.3 Programming Learning Behavior Pattern  
 

The study defines a behavioral transformation into another behavioral sequence. After analyzing and 

summarizing 49 pairs of behavioral sequences, GSEQ (Generalized Sequential Querier) is used to 

statistically predict the probability of occurrence of student behavioral sequences (Z-score). And the 

study select the significant behavior (z>1.96) to draw the behavioral sequence conversion diagram of 

the two groups of students, more intuitively understand the difference in learning behavior patterns 

between the two groups of students as shown in Figure 1. The nodes in the graph represent behavior. 

The direction of the arrow indicates the direction of the behavior transition. And the number on the 

arrow indicates the Z-score of each behavior sequence. 

 

 

 
Figure 1. Low-score group (left) and high-score group (right) learning behavior transition map 

 

It can be seen from the figure that the high-score group and the low-score group are basically similar in 

the behavior sequence, and can be summarized into several main behavior patterns. 

(1) Doing new questions in a row: Do new question (NP)-do new question (NP). It complete new 

problems in a row. 
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(2) Do new questions and understand them: There are two paths: do new question (NP) - view answer 

(VA) - view explanation (VE)- comments (CM) - like (LK) and do new question (NP) - view answer 

(VA) - view Explanation (VE) - collect question (CQ). The subjective efforts of the former are more 

obvious, and the latter relies more on the automatic solution of the system. 

(3) Review Questions: There are two paths: a continuous review (RE-RE) and review (RE) - view 

explanation (VE) - collect question (CQ) - review (RE).  

However, in the above three aspects of behavior patterns, high-score group and low-score group 

are slightly different: 

(1) Doing new questions in a row. The probability of high-score group students’ behavior is higher than 

that of low-score group. It can be inferred that the high-score group students’ first-time correct rate is 

higher so that the behavior sequence of doing the new question is less interfered by the error feedback. 

(2) Do new questions and understand them. High-score group and low-score group behave differently 

after collect question (CQ) and comment (CM). Low-score group students will do new question (NP) 

after collecting question (CQ), while high-group students are more likely to enter the review (RE) after 

collecting question (CQ). Because in daily teaching, students often collect the wrong topics and review 

them later. The learning behavior pattern of collecting question and then doing new questions reflect 

that the students in the low-score group are more likely to wait for the teacher to explain in the class. On 

the contrary, the high-score group students tend to review and deepen the impression. Low-score group 

are significantly more interactive between comments and likes than highs. Because the practice 

frequency of low-score group is less than the high-score group, it means that students are more inclined 

to do many exercises in one time. Relatively speaking, the high-score group is a kind of decentralized 

learning and more frequent practice questions, which is also in line with the testing effect. 

(3) Review Questions: High-score group students are more inclined to review (RE)-view explanation 

(VE)-collection question (CQ)-review (RE). During the review, the high-score group will often view 

the explanation (VE), forming a closed-loop of review. Answer explanation often explains the error in 

more detail and describes the knowledge of other option designs. This behavior pattern also reflects the 

behavior of high-score group students deep understanding exercises. 

 

5. Research Conclusions and Recommendation 
 

This study analyzes the frequency and sequence of high-score group students and low-score group 

students’ learning behavior in one-semester practice. From the frequency of learning behavior, the more 

comments and likes, the better the learning effect, but not in reviewing, viewing answers, viewing 

explanation and collecting question, even low-score group students view answers and view explanation 

more frequently than high-score group students. This shows that participation in social learning can 

effect positively, but complete personal learning has limited effect on programming learning even 

frequently viewing answers effect negatively. From the perspective of the learning behavior sequence, 

the high-score group students tend to review after collecting the questions compared to the low-score 

group. The collected question is generally a wrong question or a difficult problem. After the collection, 

more review has been carried out, reflecting the timely consolidation and exploration of the problem by 

the high-score group. It's also important to look at when students view the explanation. Although the 

low-score group tend more frequently view explanation than the high-score group, the high-score group 

is more significant in behavior from review to view explanation and from view an explanation to 

review, indicating the importance of view explanation when review. Answer explanation is a more 

deeply explanation and combing than the answer, which can prevent students from being guess question 

correctly or misunderstood. For procedural knowledge such as c language, the learners tended to review 

the explanation of the question and re-answer it.  

Based on the above conclusions, this study proposes the following two suggestions for the 

after-class exercises of programming learning. 

(1) When practicing after class, it is very important that teachers and students, students and students 

communicate around the exercises. With the development of smart systems, the general teaching 

platform provides diagnostic feedback to help students answer relevant exercises, but this is not a 

substitute for communication between people. In the discussion area of the question, students can 

express their doubts, and teachers and students can give targeted explanations. Some of the possible 

reasons for doing question wrong are that knowledge is not mastered or the other details are not careful. 
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This question cannot be resolved from viewing the answer or viewing answer explanation. Free speech 

around the question enables students to achieve a transition from passive acceptance to active learning. 

(2) When practicing after class, the teacher should grasp the timing of the presentation of the answer 

explanation, and students should be encouraged to view explanation when reviewing. In normal 

teaching, there always exits situation that the teacher thinks that the student is mastered and the student 

is embarrassed to say no, or that the student does not realize that he or she does not master. Therefore, 

on the one hand, when the students review the question in the teaching system, the teaching system can 

actively present explanation. This will not make the students lose the opportunity to answer again 

because of viewing explanation, but also allow the students to prove their ideas when they are right. On 

the other hand, if there is no teaching platform, the teachers can also analyze the detailed answers 

explanation to the students by mail, group, etc. 
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