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Abstract: In this paper, we describe a code reading support environment and a classroom 

practice using our system for understanding of nested loop. In our preceding work, we had 

practiced an exercise class in nested loop with a code reading support environment. The 

evaluation results suggested that students could obtain an expected learning effect roughly by 

using our system. However, we also found some of them had reached a learning impasse in the 

classroom. We tried to cope with them, based on two supporting approaches; to bridge a gap 

between generalization structures of program code and corresponding operations, and to make 

students capable of predicting the behavior of the nested loop. We extended the preceding 

system with some new functions according to our approaches, and practiced renewed exercise 

class in nested loop with our system. The evaluation results suggest that our new system has a 

certain correlation with understanding of nested loop. 

 
Keywords: Education for programming, Domain world models, Learning environment for 

exercise, Education for informatics, Classroom practice. 

 

 

1. Introduction 

 
As an information level in our society advances, increasingly more various students need a computer 

programming education (Robins, Rountree, & Rountree, 2003; Pears et al., 2007). In our classroom 

experience, we have been attracted an attention by following three fundamental skills which novice 

programming students tend to feel difficult to acquire: 

F1. Nested structure; some students are hard to understand it in control flow or code description. 

F2. Generalization; some students are hard to generalize a set of concrete operations into an abstract 

function with some variables. 

F3. Tracing; some students are hard to grasp values of variables clearly, which is changing through 

each statement. 

Nested loop is a learning target which novice students would stumble for the first time, because 

learning of that needs to understand or to acquire above all three fundamentals. Koppelman and van 

Dijk (2010) emphasized the importance of nested loop as one of the targets to understand the concept of 

abstraction. However, limited time of the course would hardly allow students to get a deep 

understanding of these fundamental concepts. In order to have our students learn them efficiently, we 

have tried to introduce learning support systems into our classroom exercise in nested loop (Kogure et 

al., 2013). 

Generally, programming students learn algorithms, code-readings and codings in turn. We have 

already developed the learning support system for the code-reading stage (Kogure, Okamoto, Noguchi, 

Konishi, & Itoh, 2012). As in our preceding work, we assumed that learners understand programs and 

algorithms by having an image consisting of three fields in their minds: program-code, objects 

processing by the program (target domain world), and sequence of concrete operations for the target 

domain. Learners have to grasp the relationships and correspondences among the components in each 
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field there. Our preceding system supports to understand a program-code by visualizing three fields and 

their relationships. 

In our preceding work, we practiced exercise classes in nested loop with our system and found 

some students had reached a learning impasse in the classroom. Based on implicit and explicit feedback 

from our students, we constructed two approaches to cope with the problems; to bridge a gap between 

generalization structures of program code and corresponding operations, and to make students capable 

of predicting the behavior of the nested loop by observing two characteristics in the code. 

In this paper, we describe new functions incorporated to our system according to these 

approaches and renewed classroom practice for nested loop. The evaluation results suggest that our 

extended system has a certain correlation with understanding of nested loops. We describe the 

preceding system in Section 2, two approaches to avoid the impasse in Section 3, an overview of our 

extended system in Section 4, respectively. We provide an overview of our classroom practice, our 

controlled experiment, and evaluation result of our system in Section 5, and we conclude with a brief 

summary and discussion of future work in Section 6. 

 

 

2. Learning Environment for Programs and Algorithms 

 

2.1 Our Preceding Work 

 
In our preceding work, we assumed that learners need to have a image consisting of three fields and to 

grasp the relationships among their components; program-code field (PF), target domain field (TDF), 

and operations field (OF). Under this assumption, we developed the system which supports students to 

understand programs. Figure 1 shows the overview of learning support environment provided by the 

system (hereafter called LEPA). Each of three fields is reproduced in (A), (B) and (C), respectively. 

 

 

Figure 1. Overview of the environment provided by LEPA 

 

A Learner can click one of operations in (C), so that the system displays the state of target 

domain after executing it in (B). S/he can know the role of a certain sequence of operations by 

comparing or observing visualized TDF before and after executing that. The system highlights the code 

fragment in (A) corresponding to the selected operation in (C), and vice versa because the system also 

allows him/her to click a fragment in (A). S/he can know the correspondence between a code fragment 

and an operation. We believe that s/he can store many pieces of intelligent information from 
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visualization by LEPA: what may happen in TDF by executing a concrete operation, or what kind of the 

code is needed to cause an effect on there. 

Learning with LEPA is based on learner's externalization of his/her stored information. The 

externalization can be done by his/her packing and tagging process using GUI interface. If s/he found a 

certain sequence of operations having single abstract function in (C), then s/he could use GUI interface 

of the system in following two steps: 

1. S/he can push “pack” button to pack the selected operations sequence into a package. Nested 

structure of packages is allowed. 

2. S/he can tag the package with a natural language description according to its function (as in pointed 

part in Figure 1). 

The resultant packing structure of operations sequence gets closer to the program code structure, 

ideally. We consider s/he will get to understand whole control sequences of the program code in the 

overall process of a series of these activities. 

An activity of externalization can be classified into two classes according to the repetitiveness 

in target operations: abstraction for operations without that, generalization for ones with that. LEPA 

supports the former activity by the function of packing operations, and the latter by the one of tagging 

n-th lap of a loop (as in Figure 2). 

 

 

Figure 2. Tagging a package and tagging n-th lap of a package 

 

2.2 Related Works 

 
Shneiderman, Mayer and Heller (1977) defined a flowchart to be represented a high level definition of 

the solution to be implemented on a machine. Based on that, they stated flowcharting and programming 

can be separable independent tasks. It suggests that we may treat elaborating an algorithm and writing a 

program code as two separated tasks. We think that understanding an algorithm and a program code 

also can be separable. 

So far, several intelligent tutoring systems are developed to support programming learners. 

They include RoboProf (Daly & Horgan, 2004), JITS (Sykes & Franek, 2003), J-LATTE (Holland, 

Mitrovic, & Martin, 2009), BITS (Butz, Hua, & Maguire, 2006), and so on. Several learning support 

systems based on algorithm visualization are also paid a lot of attention, including TRAKLA2 (Malmi 

et al., 2004), Jeliot3 (Moreno, Myller, Sutinen, & Ben-Ari, 2004; Čisar, Pinter, Radosav, & Čisar, 

2011), ViLLE (Rajala, Laasko, Kaila, & Salakoski, 2008), and so on. Classifying these systems from 

the standpoint of the tasks understanding an algorithm and a program-code, the main target in every 

system seems to support either of them. Our attractive target is a gap between two tasks. We consider 

that these systems will provide insufficient support to bridge the gap. 

Learners who have a proper understanding of an algorithm can reproduce its behavior for a 

concrete data. A sequence of operations in LEPA is a sequence of natural language descriptions 

representing the algorithm behavior. Hence, operations sequence can be regarded as an externalization 

of his/her understanding of the algorithm. Some other existing systems visualize relationships between 

a program code and its target domain world. LEPA also does it, and furthermore, relationships between 

a sequence of operations and its target domain. It also visualizes the correspondence relationships 

between a code fragment and an operation. We expect that these visualizations of three fields and 
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relationships among them contribute to bridging the gap between two tasks. That is why we base our 

approaches to bridge the gap on LEPA. 

Given a program comprehension task to a programmer, his/her procedure for code reading 

consists of two steps normally; recognizing the function of groups of statements, and then piecing 

together these chunks to form ever larger chunks (Shneiderman & Mayer, 1979). S/he continues these 

steps hierarchically until the entire program is comprehended. LEPA has a function to support a learner 

to behave oneself like that in OF. Therefore, users can learn the procedure for code reading. However, if 

the chunk corresponds to iteration like a loop, it is often the case that his/her recognition involves 

generalization with some variables. As described below, LEPA supports insufficiently to generalize an 

iterative package. 

We can find some systems targeting nested loop, including AlgoTutor (Yoo, Yoo, Seo, Dong, 

& Petty, 2012), the tutor developed by Dancik and Kumar (2003), and so on. However, it is not evident 

how they lead learners to understand or to acquire the fundamental concepts F1, F2, and F3 described in 

Section 1. Our works described in this paper aim to sophisticate the learning supports in LEPA by 

elaborating the strategy of hierarchical procedure for code reading. 

 

 

3. Our Supporting Approaches 

 
In our preceding work, we had practiced an exercise class in nested loops with LEPA. In that class, we 

found some of the students had reached a learning impasse. Based on the score differences between 

pre/post tests, the system did not have statistically significant correlation with student's ability of 

generalization. In this section, we describe two approaches to tackle them. 

 

3.1 A Gap between the Representations of Generalization 

 
Packing the operations is taking them closer structurally to the program code. However, we can find a 

gap between the structure of a package and corresponding fragment of program code as in Figure 3. 

 

 

Figure 3. A gap between generalized operations and program code 

 

The right side of Figure 3 shows a program code which displays a N-step pyramid by outputting 

an adequate number of spaces, asterisks, and new-lines. Other side shows a transition of the package 

structure corresponding to the code. This would be the most possible transition, we think. 
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We expect those packages are made through following steps of a student's learning: First, s/he 

observes three fields, and consequently makes two packages like “output x spaces” and “output y 

asterisks”. Here, s/he assigns concrete numerics in x and y, not variables. Then, s/he packs 

hierarchically them plus an operation which outputs a new-line, and tags it “output z-th step of 

pyramid”. z is a concrete numeric, again. S/he continues these steps until all operations in OF are 

included in packages. Finally s/he gets N packages, packs them, and tags n-th lap. 

In LEPA, the target of a generalization tagging is the first hierarchical level only. It means that 

s/he tags n-th lap with a variables only on the packages “output z-th step of pyramid”. The system hides 

deeper levels than it in OF (outputting spaces, asterisks and new-lines). However, a program code of 

nested loop is given all over the hierarchy. Generalized the first level hierarchy into “output k-th step of 

pyramid” with variable k, then s/he should also do deeper levels as “output N-k spaces” or “output 2k-1 

asterisks”. With the generalizations throughout the hierarchy, s/he should realize the meanings of 

control statements for nested loops in the program code. 

Based on these discussions, we have implemented a function to enable users to generalize a 

package as keeping the hierarchy explicit, so that s/he can tag n-th lap of inner loops. In addition, we 

have also implemented one to generate a template of general tag automatically in following steps; 

1. discriminating variable words from invariable ones in the set of tags on packages to be generalized,  

2. and replacing variable ones to a series of some symbol like “_”. 

For example, in displaying pyramid, our system generates templates like “output XXX spaces”, 

“output ??? asterisks” and “output ___th step of pyramid” from the set of tags. Proposing templates to 

the learner, our system encourages him/her to formulate “XXX”, “???”, “___” with loop control 

variables in the program code. The screenshot in Figure 4 shows the implemented functions. They are 

expected to lead learners to understand the structure of nested loops. 

 

 

Figure 4. Generalization of packages as keeping the hierarchy explicit 

 

3.2 Two Characteristics in Nested Loop Code 

 
Investigating textbooks and exercises, we have classified the behaviors of nested loops learned by 

students into 4 types. The classification is based on following two characteristics in nested loop code: 

Ch1. A statement to iterate in inner loop has a reference to control variables of the outer loop. 

Ch2. A conditional statement of inner loop has a reference to control variables of the outer loop. 

The complication of behavior of nested loop tends to grow with them, in the order of neither of them, 

Ch1, Ch2, and both of them. Learning these relationships between the behavior and the characteristics 

could enable learners to get a deep understanding of nested loop. 
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A programmer implements loops including not only the identical operations, but also wide 

variety of repetitive operations by referencing the loop control variables appropriately. For example, 

different values are displayed by iterative executions of the statement to display the value of variable i 

in a loop controlled by i. Therefore, the iteration package corresponding to the statement consists of a 

sequence of operations with different descriptions each other. The generalization with our system has 

two phases; to find operations varying regularly in an iterative package in OF, and to formulate the 

regularity.  

A nested loop increases the diversity of repetitiveness in the corresponding operations. We 

have to take account of not only inner and outer loops in which their control variables are referenced 

respectively, but also loops with above two characteristics. A nested loop with Ch1 has operations with 

varying representation in each iteration step of the outer loop, that is, each inner loop. For example, left 

side of Figure 5 shows a program code outputting different values according to each iteration step of the 

outer loop. On the other hand, a nested loop with Ch2 has the different number of operations 

corresponding to the inner loop according to every iteration step of the outer one. For example, right 

side of Figure 5 shows a program code where the different number of operations corresponds to the 

inner loop according to every iteration step of the outer one. 

 

 

Figure 5. A program-code with Ch1/Ch2 and its operations sequence 

 

We call the nested loops with Ch1 to “step contents varying type” of nested loops, and those 

with Ch2 to “step times varying type”. A learner needs to recognize the repetitiveness of the operations 

sequence appropriately with or without these characteristics, in his/her series of packing. Furthermore, 

to recognize the repetitiveness, a learner needs to anticipate the regularity in OF according to 

characteristics in PF. 

Based on these discussions, we have planned to teach students these characteristics, aiming to 

allow them to cultivate a better understanding. We have also implemented another function to support 

to learn them, which asks for an answer to the question; which type of nested loop does the one given by 

our system have; step contents varying type, step times varying type, or both types? For the students 

who cannot answer, our system gives a following sequence of stepwise hints: 

1. Hints on which part of the program-code they should focus. 

2. Hints about what characteristics they should read from the focusing part. 

3. Characteristics that should have been read. 

 

 

4. Our Extended System 

 

4.1 Overview of Our Extended System 
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We show an overview of the environment provided by our extended system in Figure 6. Our system 

places more emphasis on supporting to learn nested loops than LEPA. Our system leads learners to 

learn based on following scenario of nested loop learning. 

 

 

Figure 6. Overview of the environment provided by our system 

 

Ex1. Tracing the program code to understand the behavior and control flow over the entire program. 

Ex2. Packing the sequences of operations to recognize abstract functions and to understand the entire 

program as a function hierarchically. 

Ex3. Generalizing the packages of operations sequences to understand the structures of the nested loop. 

Ex4. Observing the characteristics of nested loop on the program-code to cultivate a better 

understanding of nested loops. 

In nested loops, the repetitiveness to find in a generalization phase appears not on the concrete 

operations but on the tags on packages packed by the learner. We have implemented following 

functions to bring it to his/her attention in Ex3 above. 

 Autocomplete function to support to make the repetitive packages by displaying the learner’s 

tagging history. 

 Function to support to focus on repetitive packages by setting similar tags to the same color. 

 Function to support to look up a repetitiveness on the tags by hiding concrete operations. 

 Function to support to tag n-th lap appropriately by providing the template of generalization tag. 

 

4.2 Expected Learning Effect 

 
Preceding educational practice suggests that learning with the environment visualizing three fields and 

relationships among them has a rough correlation with understanding or acquiring fundamentals F1 and 

F3 described in Section 1. In addition to these effects, our system could bridge the gap between each 

representation of generalization in the program code and a sequence of operations, and could lead 

learners to better understandings about nested loops. Consequently, it could also lead them to 

understandings of F2. We have hypothesized following two learning effects of our extended system. 

Hypo1. Functions proposed in Section 3.1 could promote learner's understandings of behaviors and 

structures of nested loop. 

Hypo2. Functions proposed in Section 3.2 could promote learner's understandings of relationships 

between implementations and behaviors of nested loop. 
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5. Evaluation of Learning Effects Based on Educational Practice 

 

5.1 Overview of Classroom Practice 

 
For the purpose of verification of two hypotheses described above, we practiced two consecutive 

exercise classes in nested loop with our extended system. Our classes were incorporated into a series of 

actual classes being held in department of administration and informatics, Hamamatsu University. The 

department holds two courses “Programming I” and “Programming II” for second year students. Our 

classes were practiced in the latter. The number of attending student was 12. Each of the students is 

majoring in business administration and had less than a year of learning programming. 

In the first class, a teacher who regularly teaches the course gave a lecture on single and nested 

loops in 60 minutes as refresher training. The lecture includes the characteristics of nested loop 

described in Section 3.2. At the end of the class, we conducted a 15 minutes pretest to judge the 

students' understanding level of nested loops before using our system. In the second class, we allowed 

the students to use our system to learn nested loop. The program for this exercise is the one that displays 

a 5-step pyramid with spaces, asterisks, and new-lines. Before the exercise in the class, the teacher 

described the aims of the exercise and the environment provided by our extended system. During the 

exercise, neither the teacher nor we provided help to the students in understanding the program. After 

the 60 minutes exercise, we conducted a 15 minutes posttest to judge the students' understanding level 

of nested loop after using our system. We used BB FlashBack Express 3 (available on: 

http://www.bbsoftware.co.uk/BBFlashBackExpress.aspx) for recording the screen videos of students' 

interactions with the environment. 

The programs used in the pretest and the posttest are different; however, the questions are 

almost the same. Question 1 (Q1) asks the execution result expected by tracing the entire program 

including nested loop by hand. Question 2 (Q2) asks the code fragment in the control of the inner-loop 

with the execution result given, and Question 3 (Q3) asks that of the outer-loop. Question 4 (Q4) asks 

the characteristics of nested loops to be expected to appear on program-code, given the execution results 

only. Q1, Q2, and Q3 are designed to verify the Hypo1, and Q4 for the Hypo2. 

For the purpose of more detailed verification of advantage of learning with our system, we 

conducted another controlled experiment with 5 students as the control group. They are the second year 

students in the same course as the experimental group, but have not attended in our practiced class. 

First, they were given the same lecture on loop as experimental group in 60 minutes, including the 

characteristics of nested loop, and then we conducted the 15 minutes pretest. Next, they did the 

self-study with textbooks and lecture materials, never using our system. Before the self-study, the 

teacher described the aim of that is to understand nested loop with an example program. The example 

program is the same as one in the exercise practiced. The teacher also described the direction for 

self-study should be based on tracing the program. After the 60 minutes self-study, we conducted the 15 

minutes posttest. The pre/post test are the same as ones for the experimental group. 

Table 1 shows the differences of the average score on each question between pretest and 

posttest of experimental and control group. We marked each question in both test as following; Q1 out 

of 3, Q2 out of 9, Q3 out of 3, and Q4 out of 48. A tendency can be seen in that experimental group 

grows the marks significantly between the pre/post test but the control one does not. 

 

Table 1: The differences of the average score between pre/post-test 

 Q1 Q2 Q3 Q4 

experimental 0.83 0.75 0.50 1.50 

control 1.20 0.20 -0.60 -5.70 

 

We think that more progress in control group on Q1 is caused by the direction for their 

self-study provided by the teacher. They could have consumed much of their time in tracing the 

program. Therefore, we consider they have an advantage over experimental group whose learnings 

consisted of 4 stepwise exercises. 
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5.2 Discussion 

 
We examined carefully footage recorded for each student of experimental group in order to analyze 

learning effects in more detail. Consequently, we found the interactions with the learning environment 

provided by our system differ significantly among each of the students. For following 4 activities, we 

categorized the students into those who performed the activity (positive group) and those who did not 

perform the activity (negative group). 

A1. The student consumes enough time in tracing the program (Ex1). 

A2. The student packs all the operation sequences corresponding to the inner loops and tags all the 

packages (Ex2). 

A3. The student accepts the guidance function of outer loop generalization appropriately (Ex3). 

A4. The student uses the function to support to observe the characteristics of nested loop (Ex4). 

We consider these activities lead the learning effect as follows. 

 A1 to be the action to understand the behavior of the entire nested loop to acquire tracing skills 

(F3). 

 A2 to be the action to understand the step contents of the inner loops and to understand the 

structure of the nested loop (F1). 

 A3 to be the action to understand the step contents of the outer loop and to acquire the skills to 

generalize concrete operations (F2). 

 A4 to be the action to understand the characteristics of the nested loops and to understand the 

relationships between the behavior and the characteristics on the program-code. 

We expect the students performed these activities to grow their marks; the student performed A1 would 

grow his/her mark on Q1, the one performed A2 would do that on Q2, likewise the one performed A3 

and A4 would do that on Q3 and Q4, respectively. 

Table 2 shows the differences of the average score on each question between pretest and 

posttest of positive and negative group from A1 to A4. By performing an independent t-test, if the 

difference between negative and positive is statistically significant progress at the level p = 0.05, we put 

an asterisk next to the number. Each positive group shows significant progress their marks on 

corresponding question on the whole as expected. 

 

Table 2: The differences of the average score in positive and negative group 

  Q1 Q2 Q3 Q4 

A1 
Positive 1.43

*
 1.57 1.29

*
  

Negative 0.00 -0.50 -0.75  

A2 
Positive 0.80 2.60

*
 0.60  

Negative 1.00 -0.67 0.50  

A3 
Positive 1.17 1.67 1.50

*
  

Negative 0.60 -0.20 -0.60  

A4 
Positive    2.63

*
 

Negative    -0.75 

 

The progresses in Q1, Q2 and Q3 suggest to favor the Hypo1, and that in Q4 suggests to favor 

the Hypo2. Hence, the results suggest that our system has a certain correlation with the understandings 

about nested loops on condition that user performs the expected activities. 

 

6. Future Work 

 
In this paper, we described the classroom practice for understanding of nested loop and the learning 

support system adopted there. Nested loop is an appropriate target to learn the fundamental skills of 

programming. We think that learning support systems contribute to understand or acquire them 

efficiently and effectively. 

In the preceding educational practice with LEPA, we found some of the students had reached a 

learning impasse. We tried to cope with them, based on two supporting approaches; to bridge a gap 

between generalization structures of program code and corresponding operations, and to make students 

capable of predicting the behavior of the nested loop by observing two characteristics in the code. 
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According to them, we developed the function to generalize packages as keeping the hierarchy explicit 

for the former, and the function to support to observe the characteristics of nested loop for the latter. 

We evaluated the effect of our system added the functions above in the actual classes. We also 

conducted a controlled experiment with 5 students as control group to verify the advantage of learning 

with our system in more detail. The evaluation results based on the scores on pre/post-test suggest that 

learnings with our system have a certain correlation with the understandings about nested loops. 

As described in (Kogure et al., 2013), we have not only intended to support learners to learn 

nested loop. Our goal is to construct new form of education for programming with our code reading 

support environment. The correlation observed in the classroom practice suggests that our system will 

contribute to learner’s understanding or acquisition of three fundamentals; F1, F2, and F3. We plan to 

collect more knowledge from more practices with our system, and to enhance our system and our 

classes. 
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