Digital Multi-Grade One-room Schoolhouses for underprivileged communities in rural Pakistan

Faisal BADAR

Charles Darwin University, Australia *faisal.badar@students.cdu.edu.au

Abstract: Despite extensive global efforts to make education accessible for all, one out of every five children are out-of-school. The situation demands re-thinking of learning strategies, particularly in underprivileged context. Continued advancements in learning technologies may offer novel solutions. The one-room schoolhouse is a centuries-old proven educational system, which has yielded promising results for rural areas. Using a multi-grade teaching method, the one-room schoolhouse provides a resilient model for educating children at locations that lack quality teachers and resources. This paper outlines doctoral research focused on identifying ways to develop adaptable and sustainable approaches to educate underprivileged out-of-school children in rural and remote areas of Pakistan through digital one-room schoolhouses, and suited to their local dynamics.

Keywords: Rural Education, Out-of-school children, ICT, one-room schoolhouse, Multi-grade teaching, underprivileged

1. Introduction

The development of any society can be determined by assessing the measures taken to provide quality education to every child, and to eradicate educational inequality that may be prevalent. Global initiatives such as 'Education for All' (EFA) and 'Sustainable Development Goal-4' (SDG-4) focus on this (UNESCO, 2015). Despite such initiatives, global statistics show that one out of five children is out-of-school. Furthermore, a decline in efforts from participating governments, progress in decreasing the number of out-of-school children, adolescents, and youth has significantly reduced in recent years (Statistics U. I., 2018). The Gender Gap Report also indicates significant difference in the average attainment of education by girls in South Asian Countries such as Pakistan, India, Afghanistan and Bangladesh (Forum, 2017).

Mobile and ubiquitous Information and Communication Technology (ICT) tools have enabled new ways to teach and learn where they are no more dependent on a specific time, place, or teachers (Hussain, Wang, & Rahim, 2013). Innovative e-learning solutions are also emerging in remote and rural areas in developing countries; however, the sustainability of sometimes-disruptive innovations create a challenge for governments and policy makers (Badar, Mason, & Khan, 2018). The one-room schoolhouse offers a practical and adaptable approach for 21st-century learning where student-centric learning is focused within a multi-grade student class (Goodlad, 1996). They provide a positive alternative to social promotion, stigmatizing, a traditional form of ability grouping, and grade labelling while encouraging personalised learning (Bennet, Hare, & Lee, 1983; Pratt, 1986; Veenman, 1995).

2. Out-of-school children and contribution of digital technology for education

263 million children and youth are out-of-school from primary to upper secondary (UNESCO, 2015). Children from economically and educationally disadvantaged families tend to have weaker educational base compared to their advantaged counterparts within the society, and the gap only widens during the school years (Hutchinson, et al., 2017). There are several factors leading to this gap including learning environment at home, opportunities to hear and read more words, and access learning activities outside the home (Smees & Sammons, 2017). The gap often leads to a higher number of dropouts. The main

reasons behind out-of-school secondary level children are poverty, location, and gender, and learning models based on mobile technology can provide access to "people who live in a remote location where there are no schools, teachers and libraries" (Ally, 2009).

2.1 Role of classroom, ubiquitous and mobile technologies in spreading education

Education in developing countries could be transformed by e-learning through mobile technology (Badar, et al., 2018). With mobile-learning, learners have more flexibility of what, when, where, why and how to learn, making it an individualized, personalized and highly interactive learning (Cobcraft, Towers, Smith, & Bruns, 2006). Ubiquitous technologies such as mobile phones are widely considered as the optimal solution for delivering education in developing countries, because of their usability, accessibility, and affordability (Grimus, et al., 2013; Ford & Leinonen, 2009). Mobile technology has the potential to shift the teaching focus to the learner (Grimus, et al., 2013).

2.2 Pakistan; education and out-of-school children status

Pakistan is the sixth most populated country in the world, with 63% population under the age of 25 years and has the fourth largest pool of out-of-school children (UNESCO, 2017). Most of the out-of-school children are residing in remote, rural or underprivileged city areas where prevailing challenges in providing quality education include a shortage of good teachers, the hidden child labour challenge, affordability and cultural barriers to pursuing educational goals (Titola-Meskanen, 2014). Education quality and standard are declining in rural areas and increasing urban/rural disparities and inequalities, which is creating a learning crisis in low-income rural areas (Agarwal, 2014). Funds granted by international funding agencies are not utilised effectively and hence the education sector is badly affected in the last few decades (Khan, Lurhathaiopat, & Matsushita, 2016).

3. One-room Schoolhouses

3.1 One-room Schoolhouses

One-room schoolhouses have been common all around the world and operating for the last 300 years (Williams, 2005). However, while these schoolhouses became popular in the nineteenth century, they were also used as community centres. In addition to being used for educational purposes, they were used for church services, Christmas parties, community suppers, lectures, etc. After completing the school year, students were examined orally covering their spelling, arithmetic problem-solving competence, and other subjects, based on which teachers determine the students' future level of studies.

The one-room schoolhouse has traditionally provided an integrated approach to the curriculum, often mixing age and aptitude. As a method for a 21st-century education, it is distinguished from conventional curriculum design because it revisits this older approach. Interestingly, recent research indicates it improves the non-cognitive abilities of students, giving them the opportunity to mentor relatively less advanced students (Cundra, Benzel, & Schwebach, 2017). The one-room schoolhouse encourages and supports peer-mentoring between relatively more and less experienced students. This pedagogical approach helps students to access challenging course material when someone among them has more relevant knowledge and provided the opportunity to educate the less knowledgeable ones (Bhuiyan, Supe, & Rege, 2015). Methods such as one-room schoolhouse integrate peer-mentorship into the curriculum design directly and provide a more conducive learning environment as compared to the traditional learning approach (Cundra, Benzel, & Schwebach, 2017).

4. Research Description (Research aim, question and significance/contribution)

4.1 Research Aim

The aim of this research is to explore and develop adaptable and sustainable approaches for providing digital education to out-of-home children through one-room schoolhouses in the underprivileged context in Pakistan, suited to their local dynamics and limitations.

4.2 Research Questions

- In what ways can approaches be developed for 'digital education through one-room schoolhouses' for children in underprivileged contexts in Pakistan?
- What factors are needed to be considered to test whether these approaches are adequate?

4.3 Significance/contribution of Research

This study aims to identify new ways to educate out-of-home children in underprivileged contexts using educational technology. Significantly, it will explore approaches capable of understanding local surroundings affecting the underprivileged children's educational opportunities and provide an acceptable and adaptable solution. The approaches will also be able to assess the varying needs based on their localized socio-cultural dynamics and can propose the optimally suited educational technology and pedagogy in that particular context. To develop such approaches, a significant understanding of the factors affecting the educational opportunities is required.

5. Research methodology and research progress

This research is supported by a mixed methods approach because the complexity of the problem suggests that disparate data may yield new insight. There are several components to this research:

- 1. Review of 'stand out' educational technology initiatives during the last two decades.
- 2. An exploratory study of 'One-room Multi-Grade Schools' operating in rural and remote areas of Pakistan along with the impact analysis of introducing education technology tools to students studying in these schools. Approximately 10 one-room schoolhouses will be visited.
- 3. Qualitative research (interviews/focus groups) involving relevant stakeholders of students studying in one-room schoolhouses in rural areas of Pakistan to understand local socio-cultural factors for not sending their children to school prior admitting them in one-room schoolhouses.
- 4. Quantitative research (survey questionnaire) involving secondary stakeholders of out-of-school children to understand their point-of-view regarding the socio-cultural drivers for out-of-school children and efficacy of one-room schoolhouses. These include parents of school-going children in remote and rural areas of Pakistan, principals, teachers and administration staff of schools operating in remote and rural areas of Pakistan, and local influencers in remote and rural areas in Pakistan.
- 5. Qualitative data analysis using NVivo software, and quantitative data analysis through SPSS software. Subsequently, comparative analysis of data related to the drivers for out-of-school children gathered from parents of out-of-school children through qualitative and that from other stakeholders through quantitative method
- 6. Developing adaptable approaches in light of the comparative analysis outcome and one-room schoolhouses study, for educating out-of-school children in remote and rural areas of Pakistan through educational technology tools, suited to their local dynamics.

6. Research findings and future directions

Field visits to one-room schoolhouses in rural areas of Sindh, Pakistan and discussion with the stakeholders of these schools including parents of students, the teachers and the management of these schools provided insight regarding the local dynamics of these schools and the challenges these schools are facing. One of the major challenges is availability of qualified and experienced teachers in these areas. The rooms for improvement surfaced during the visit and discussion provided an opportunity to

integrate the contemporary educational technology tools with the traditional learning methods presently in practice to educate the children studying in these schools according to global standards, and to help them overcome their challenge of attracting quality teachers for these schools. A pilot project to implement these technologies into their educational system is underway to observe the pathway and the efficacy of Digital One-room Schoolhouses in rural Pakistan.

Transcription of conducted interviews with the parents of out-of-school children is in progress. After transcription of data, the collected data will be analysed through NVivo. Afterward, quantitative data collection and analysis will be completed as mentioned in the previous section. These analyses are likely to reveal the local dynamics and challenges faced by thee underprivileged communities in educating their children, and subsequently provide adequate understanding to find ways to develop adaptable and sustainable solution for out-of-school children in the underprivileged children, suited to their circumstances.

Acknowledgements

I would like to thank my principal supervisor, Dr. Jon Mason, and associate supervisors, Dr. Greg Shaw and Dr. Khalid Khan for their continued guidance, support and encouragement throughout my research.

References

- Agarwal, T. (2014). Educational Inequality In Rural And Urban India. International Journal Of Educational Development, 34, 11-19.
- Ally, M. (2009). *Mobile learning: Transforming the delivery of education and training*. Athabasca: Athabasca University Press.
- Badar, F., Mason, J., & Khan, K. (2018). Re-thinking out-of-school learning in rural Pakistan. Proceedings of the 26th International Conference on Computers in Education. Philippines: Asia-Pacific Society for Computers in Education. 40-445
- Bennet, N., Hare, E., & Lee, J. (1983). Mixed-age classes in primary schools: A survey of practice. *British Educational Research Journal*, 9(1), 41-56.
- Bhuiyan, P., Supe, A., & Rege, N. (2015). The art of teaching medical students. Delhi: Elsevier India.
- Cobcraft, R., Towers, S., Smith, J., & Bruns, A. (2006). Mobile learning in review: Opportunities and challenges for. *Proceedings. Online Learning and Teaching (OLT) Conference* (pp. 21-30). Brisbane: Queensland University of Technology.
- Cundra, L. B., Benzel, C. A., & Schwebach, J. R. (2017). Using the one-room schoolhouse method: The design and teaching of a summer undergraduate research course in Phage Biology. *Perspectives on Undergraduate Research & Mentoring*.
- Forum, W. E. (2017). *The Global Gender Gap Report*. World Economic Forum.
- Goodlad, J. I. (1996). Schools, curriculum and the individual. Waltham MA: Blaisdell Publishing Company.
- Grimus, M., Ebner, M., & Holzinger, A. (2013). Mobile Learning as a Chance to Enhance Education in
- Developing Countries-on the Example of Ghana. CEUR Workshop Proceedings, 955, pp. 340-345. Helsinki. Hussain, S., Wang, Z., & Rahim, S. (2013). E-learning services for rural communities. International Journal of Computer Applications, 68(5), 15-20.
- Khan, S., Lurhathaiopat, P., & Matsushita, S. (2016). The Contribution of the international community and the dynamics of history in educational policies in Pakistan: The case of success or failure. *International Journal Of Current Research*, 8(2), 42150-42156.
- Pratt, D. (1986). On the merits of multiage classrooms. Research in rural education, 3(3), 111-115.
- Statistics, U. I. (2018). UIS Fact Sheet No 48. UNESCO.
- Titola-Meskanen, T. (2014). A mobile school in the digital era: Learning environment ecosystem strategies for challenging locations and extreme poverty contexts. *Proceedings of 6th Annual Architectural Research Symposium*, (pp. 292-304). Finland.
- UNESCO. (2015). Global Monitoring Report 2015: Education for All 2000-2015: Achievements and Challenges. UNESCO.
- Veenman, S. (1995). Cognitive and noncognitive effects of multigrade and multi-age classes: the best evidence synthesis. *Review of education research*, 65(4), 319-381.
- Williams, F. K. (2005). Inside the one-room schoolhouse: A look at nongraded classrooms from the inside out. *National forum of applied educational research Journal, 18*(3), 2.

AUTHOR INDEX

Α		
ABDULLAH	ABDUL HALIM	51
AGAPITO	JENILYN	750
AKÇAPINAR	GÖKHAN	326,341
ALIZADEH	AND MEHRASA	184
AMANTE	FRANCESCO	246
ANGELA	LANGNER-THIELE	697
ANUTARIYA	CHUTIPORN	362
ARLENE MAE	CELESTIAL-VALDERAMA	793
В		
BADAR	FAISAL	280,813
BAI	SHURUI	789
BANAWAN	MICHELLE P.	246,539
BERAQUIT	JOSE ISIDRO	86,246
BHAGAT	KAUSHAL KUMAR	61
BLAKE	JOHN	308
BODEMER	DANIEL	697,700
BRINGULA	REX	769
BUGAYONG	NICOLE	86
С		
CACERES	PHILIP	246
CAGUIAT	MA. ROWENA	237
CAO	TING	461
CAO	HONGXIA	502
CAO	WEI	519
CAPARROS	MARIE RIANNE M.	246
CATEDRILLA	JYPZIE	274
CHAI	CHING-SING	599
CHANG	KUO-EN	11,509
CHANG	HSIN-YI	58, 73
CHANG	MING-HUA	58,73
CHANG	CHIA JUNG	73
CHANG	MAIGA	591,647,747
CHANG	HUAI-LING	628
CHANG	MIAO-HAN	647
CHANG	BEN	706
CHANG	WAN-CHEN	709
CHANG	TING-WEN	745
CHANOONAN	CHANAPA	258
CHANSIRI	SUPHAPHAN	252.258
СНЕАН	ΡΗΑΙΚ ΚΙΝ	110
CHEN	SHAO MEI	73
CHEN	NIAN-SHING	104.612
CHEN	ZHI-HONG	159 172
0.1211	2 1010	100,172

CHEN	SHIH-HSUN	314
CHEN	MEI-RONG ALICE	326
CHEN	JIA-JYUN	441
CHEN	SHERRY Y.	560
CHEN	KAI-PING	568
CHEN	GAOWEI	575
CHEN	MENGYUEN	575,599
CHEN	LING	651
CHEN	CHIAO-YI	688
CHENG	BO-YUAN	147
CHENG	HERCY N. H.	164
CHENG	WEN-WEN	399
CHIANG	FENG-KUANG	28
CHIANG	SHIH HSUN FAN	73
CHIANG	CHUAN-CHIH	548
CHICÓN	RAFAEL	66
CHIN	KAI-YI	628
CHIOU	GUO-LI	147
CHONGDARAKUL	WARALAK	258
CHOOKAEW	SASITHORN	134,139
CHOU	YI-SHIUAN	11
CHRISTIAN	CONDORI-MAMANI	724
CHU	CHIH-MING	2
СНО	HUI-CHUN	448
CHUANG	TSUNG-YEN	773,777
CLEMENTE	FÉLIX J. GARCÍA	66
CUESTA	JOSEPHINE DE LA	274
D		
DAI	PENGCHENG	184
DAVE	KASHMIRA	752
DITCHAROEN	NADH	604
DIY	WALFRIDO DAVID	246
DONEN	TSUYOSHI	372
DU	JUAN	28
DUAN	SU-YING	514
E		
EBARDO	RYAN	274,532
EDUARDO	DE-RIVERO	724
ERKENS	MELANIE	697,700
ESQUEMBRE	FRANCISCO	66
ESSALMI	FATHI	647
F		
FERNANDEZ	MARIKA GIANINA	86,246
FLANAGAN	BRENDAN	326,341
FREESTONE	MELVIN	414

FUJIMOTO	HIDEO	721
FUKAYA	TATSUSHI	694
FU	TZU-KENG	319
G		
GUSTAVO	SUERO-SOTO	724,734
н		
HARBARTH	LYDIA	700
HASNINE	MOHAMMAD NEHAL	192
HATAKEYAMA	HISASHI	230
HAYASHI	Υυκι	405
HAYASHI	YASUHIRO	448
HAYASHI	YUSUKE	785,809
HAYASHIDA	Υυκυο	209
HE	LEI	514
HE	JIAN	514
HIRASHIMA	TSUKASA	388.432.785.809
HONG	JING-LI	301
HONG	HUANG-YAO	548
HOPPE	H. ULRICH	697
HORIGUCHI	ΤΟΜΟΥΑ	388.432
HORIKOSHI	IZUMI	638.682.761
HOU	HUEI-TSE	11
HOU	TAI-HSIEN	471
HOWIMANPORN	SUPACHAI	134
HSU	CHUNG-YUAN	147
HSU	HSIAO-LING	326
HSUEH	YU-LING	622
HU	CHIH-CHIEN	104
HUANG	HSIN-YIN	95
HUANG	SHU-HSIEN	95
HUANG	HUAI-HSUAN	612
HUANG	BIYUN	754
HUANG	JOEY	758
HUTAMARN	SANTI	134
HWANG	FU KWUN	73
HWANG	GWO-JEN	326
1		
ISHII	YUNA	638
ITO	YASUHIRO	771
IWASA	ΑΥΑΚΑ	372
IYER	SRIDHAR	746
		740
J		
JAYAKRISHNAN	М.	746
JEONG	JI-YEON	718

JEONG	HEISAWN	718
JIANG	YICHAO	575
JONG	MORRIS SIU-YUNG	575,599
JUAN	CHING-FANG	509
JULIO	VERA-SANCHI	724,7343
JUNUS	KASIYAH	581
к		
KAMINISHI	HIDEKAZU	694
KANEHIRA	REN	721
KANEKO	KEIICHI	192
KANJUG	ISSARA	128
KANO	ΤΟΜΟΚΙ	675
KATCHAPAKIRIN	KANTINEE	362
КАТО	TAKESHI	679
КАТО	MASANAO	721
KHAMBARI	MAS NIDA MD	153,294,765
KHAN	KHALID	665
КНОО	KAY YONG	656
KLINGE	VILLALBA-CONDORI	724,734
КО	CHIH-HSIANG	483
KOBAYASHI	AYAME	703
КОН	ELIZABETH	643
KOIKE	KENTO	388
KONG	HYE RIN	184
KRISTENSEN	KASPER	47
KUMAR	VIVEKANANDAN	591,647
KUNG	HSU-YANG	647
KUO	WEN-JIA	568
KUO	RITA	591,647
KWAN	CHUNG LIM CHRISTOPHER	356
KWANG	LEONG TZE	66
L		
LAM	JACKY CHUN KIT	184
LAN	CHENG-HSUAN	691
LEAÑO	CECILIA B.	237,274
LEE	SILVIA WEN-YU	79
LEE	MIN-HSIEN	471
LEE	CLAIRE	643
LI	LINGYU	178
LI	HUIYONG	341, 797
LI	SHIH-CHUNG	441
LI	BAO-PING	476
LIANG	JYH-CHONG	95,509
LIAO	CALVIN C. Y.	712
LIMPIN	LAIZA	274,532
LIN	HSUAN-YU	2

LIN	PAI-CHUAN	79
LIN	YI-HSUAN	326
LIN	LU-FANG	382
LIN	TZU-SHIN	525
LIN	GUAN-LIN	560
LIN	VIVIEN	612
LIN	KUNG-HOU	777
LIU	CHEN-CHUNG	58,73,79
LIU	WEN-YI	159,172
LIU	MEIQIN	217
LIU	GUAN-CHEN	483
LIU	HAO-ZE	622
LIU	YI CHUN	691
LOOI	CHEE-KIT	203
LU	CHUN	461
LU	ZHONG-XIU	591
LUMAPAS	RAUL VINCENT W.	539
LUSHIANNA	TEJADA	734
Μ		
MAJUMDAR	RWITAJIT	341
MANAHAN	DOMINIQUE MARIE ANTOINETTE	86.246
MANSKE	SVEN	697
MARCHETTI	EMANUELA	38
MARTHA	ATI SUCI DIAN	581
MASON	JON	280.414.665
MATSUBARA	RISA	372
MATSUO	SHO	209
MERCEDES RODRIGO	MA.	769
MISHIMA	NOBUO	209
MITROVIC	ANTONIJA	781
MITSUHARA	HIROYUKI	217
MIWA	ΝΑΟΚΙ	721
MOKHTAR	MAHANI	51
MORENO	MONICA	86,246
MORISHIMA	Υυκι	422
MOSES	PRISCILLA	110
MOURI	KOUSUKE	178,192
MUROI	ΤΑΚυΜΙ	672
MUROTA	MASAO	230
MURTHY	SAHANA	746

Ν		
NAGAI	MASAHIRO	230
NAGATA	KATSUMI	225
ΝΑΚΑ	TOTSAPORN	604

NAKAGAWA	MASANORI	694
NAKAYA	КАЕ	694
NGEZE	LUCIAN VUMILIA	801
NIMMA	NAKARIN	128
NING	FANG-JING	476
NING	WEI	519
NOROWI	NORIS MOHD	294
0		
OCUMPAUGH	JACLYN L.	539
OGATA	HIROAKI	192,326,341
OKAZAKI	YASUHISA	209
ONG	BENSON	448
ONO	YUICHI	350.672.675.679
OONO	MASAKI	225
OZAKI	TAKURO	448
OZAWA	SHIGETO	703
Ρ		
PAN	MENG-OI	651
PANG	CHRIS	448
PANIABURFF	PATCHARIN	139
PANOMRERNGSAK	TANAKORN	19
PASCII		319
ΡΗΔΤΤΗΔΙΙΙΝΟ	ΑΔΤΤΗΔΚΔΡΝ ΝΔ	119 267
		258
DRASETVA		809
PREMTHAISONG	SASIVIMOL	286
0		
Q		
QIAN	DONG-MING	553
QIN	XIAO-IMEI	455
R		
RAHIM	NUR AIRA ABD	765
RN	DORESSES LIU PHD	670
RODRIGO	MA. MERCEDES T.	86, 246,539
S		
SADITA	LIA	785
SAELEE	CHERDSAK	119
SANTOSO	HARRY BUDI	581
SARCILLA	LEAN RIMES	246
SEET	CHIH-HUI	548
SEO	SU-JONG	718
SETA	KAZUHISA	405
SHAH	VEENITA	746
SHEN	HUNG-YANG	301
	823	

SHEN	KUAN-MING	471
SHEU	FENG-RU	490,748
SHIH	JU-LING	95,448,777
SHIH	MEILUN	490
SHIHIBORI	MASAMI	217,225
SHIMADA	ATSUSHI	192
SILAWATCHANANAI	CHAIYAPORN	134
SMITH	GREGORY	665
SOH	HON-MUN	51
SONG	YANJIE	197
SONIA	CASTRO-CUBA-SAYCO	734
SOOTKANEUNG	WARIN	134
SOTARDI	VALERIE	781
SRISAWASDI	NIWAT	19,286
SU	CHIEN-LUN	11
SU	YOU	466
SUHARTANTO	HERU	581
SUMI	KAORU	332
SUN	DANER	203
SUN	JERRY CHIH-YUAN	622
SURESH	DHIVYA	643
SWAMY	NARASIMHA	805
т		
TABLATIN	CHRISTINE LOURRINE	756
TAGUCHI	JUNICHI	682
TAHIR	FAIZA	781
TAKADA	HIDEYUKI	372
TAKEDA	Υυκι	372
TAM	VINCENT	575
TAMURA	YASUHISA	638,682,761
TAN	DARREN	66
TAWONATIWAS	MULLIKA	119
TEE	YI HUAN	643
TEY	TINY CHIU YUEN	110
THEW	NANG CHIT SU	258
THUMTATHONG	APIRAPORN	286
TIAM-LEE	THOMAS JAMES	332
TLILI	AHMED	745
ΤΟΜΟΤΟ	ΤΑΚΑΗΙΤΟ	388.432
TRAPERO	HAZEL A.	237.274
TSAI	MENG-JUNG	147
TSAI	SZU-KAI	773
	-	
U		
UENO	URARA	432
UESAKA	YURI	694
UOSAKI	NORIKO	178,184,192

V		
VALENTE	ANDREA	38
VIDAL	SONCCO-MERMA	724
W		
WAKUYA	HIROSHI	209
WANG	YA-JOE	79
WANG	HUNG-YUAN	147
WANG	XING-JUAN	553
WATKINS	TREVOR	748
WATTHANA	CHAYANUCH	267
WEE	LAWRENCE	66
WEI	TING-SHENG	568
WEI	CHUN-WANG	691
WEN	CAI-TING	58,73
WONG	SU LUAN	110,294, 765
WONG	WING-KWONG	568
WONG	VINCENT TAM	715
WONGTA	JINTANA	119,267
WONGWATKIT	CHAROENCHAI	119.134.139.252.258.267
WU	CHUN-PING	441
WU	DI	461
WU	KUO-FENG	670
WU	PEI-CHI	685
-	-	
X		
XIONG	XI-BEI	461,514
XU	CHANG	496
Y		
YACHULAWETKUNAKORN	CHITPHON	119,267
YAMAGUCHI	KAZUHIRO	694
YAMAMOTO	SHO	422
YAMAMOTO	TOSH	448
YANG	CHIH WEI	73
YANG	YIN	197
YANG	YUANYUAN	341
YANG	YU-FEN	612
YANG	SIMON	643
YE	BEI-BEI	514
YEH	HUI-CHIN	104
YIN	CHENGJIU	178,192
YOSHIOKA	MARIKO	405
YOUNG	SHELLEY SHWU-CHING	525
YU	FU-YUN	399, 685.688
YU	XIAO-RONG	461
YU	SHIH-JOU	622

Z		
ZAKI	FILZAH ZAHILAH MOHAMED	765
ZENDRATO	ROTUA	706
ZHANG	XIAOTONG	164
ZHENG	CHUNPING	466,496
ZHOU	XIAOHUA	599,715
ZHU	TING-TING	651

2019.12.2-12.6, Kenting, Taiwan

27th International Conference on Computers in Education

is organized by

The Asia-Pacific Society for Computers in Education (APSCE)

National Cheng Kung University

National Central University

National University of Tainan

is sponsored by

4 1931 V National Cheng Kung University