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Abstract:  Computational Thinking (CT) defines a domain-general, analytic approach to 
problem solving that combines concepts fundamental to computing, with systematic 
representations for concepts and problem-solving approaches in scientific and mathematical 
domains. We exploit this trade-off between domain-specificity and domain-generality to 
develop CTSiM (Computational Thinking in Simulation and Modeling), a cross-domain, 
visual programming and agent-based learning environment for middle school science. 
CTSiM promotes inquiry learning by providing students with an environment for 
constructing computational models of scientific phenomena, executing their models using 
simulation tools, and conducting experiments to compare the simulation behavior generated 
by their models against that of an expert model. In a preliminary study, sixth-grade students 
used CTSiM to learn about distance-speed-time relations in a kinematics unit and then about 
the ecological process relations between fish, duckweed, and bacteria occurring in a fish 
tank system. Results show learning gains in both science units, but this required a set of 
scaffolds to help students learn in this environment. 
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1. Introduction 
 
Computational thinking (CT) describes a general analytic approach to problem solving, 
designing systems, and understanding human behavior [10,15]. It draws on fundamental 
concepts in computing and computer science to support practices (e.g., problem 
representation, abstraction, decomposition, verification) that are central to modeling, 
reasoning, and problem solving in scientific and mathematical disciplines [10,11].  
 Developing scientific practices and problem-solving skills requires sustained, 
immersive educational experiences, which can be implemented as learning progressions for 
science in K-12 classrooms [7,9]. CT can support such progressions in the K-12 science 
curricula by integrating its inherent domain generality with support for domain specific 
representations, reasoning, and analysis of real world problems across multiple domains 
[10,11,15]. Balancing and exploiting this trade-off between domain-generality and 
domain-specificity, however, presents an important educational design challenge. 
 Previous studies on integrating programming with K-12 science have pointed out a 
variety of similar challenges [3,4]. Curricula that have effectively addressed these 
challenges take advantage of reflexivity, which hypothesizes that learning programming in 
concert with concepts in another domain can be easier than learning each separately [6]. 
Several researchers have shown that programming and computational modeling can serve as 
effective vehicles for learning challenging science and math concepts [2,5,8]. Further, many 
programming and CT concepts parallel important aspects of STEM (Science, Technology, 
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Engineering, & Mathematics) learning. For example, the creation of coherent, formal 
representations of scientific phenomena and mathematical representations of scientific laws 
are similar to object-oriented programming concepts of encapsulation, abstraction, and 
generalization. Conversely, the biological concepts of taxonomy and inheritance are the 
inspiration for class inheritance concepts in programming. 
 Leveraging the synergy between CT, science, and math learning, we have designed the 
Computational Thinking in Simulation and Modeling (CTSiM) learning environment and 
are implementing it using a learning-by-design progression. The learning environment 
combines visual programming and simulations to allow for flexible iterations between 
initial instruction in the science topic; modeling the appropriate entities and processes using 
a visual, agent-based computational framework; simulating and studying the behavior of the 
model; using explanation and argumentation skills to understand and verify the model; and, 
applying the developed model and science understanding to problem-solving tasks. The 
learning progression can be implemented over a progression of topics. 
 This paper presents the rationale for the learning environment design and a two-unit 
science sequence (kinematics and ecology) to demonstrate our computational thinking 
approach across domains. We describe an initial CTSiM study with 6th-grade  students in a 
middle Tennessee public school. The results demonstrate the effectiveness of our approach, 
supporting the premise that students’ conceptual understanding of science topics improves 
after engaging in CT-based curricular units. Finally, we present the categories of scaffolds 
used in the study and discuss the role these scaffolds likely played in the students’ learning.   
 
 
2. The CTSiM learning environment and curricular units  
 
To support learning-by-design activities, CTSiM comprises three primary components [11]: 
(1) the Construction (C) world, (2) the Enactment (E) world, and (3) the Envisionment (V) 
world. The C world provides a visual programming interface where students build 
computational models for the science topics they are learning. It includes a library of visual 
primitives corresponding to agent actions, sensing conditions qualifying agent actions, and 
controls for regulating the program’s flow of execution (e.g., conditionals and loops). Each 
visual primitive is defined in terms of an underlying domain-independent computational 
primitive. Students drag and drop these primitives and arrange them spatially to generate 
their computational models, as illustrated in Figure 1 for an ecology unit. 
 

 
Figure 1: The Ecology unit Construction world with a ‘breathe’ procedure for ‘fish’ agents 

723



 In the E world, illustrated in Figure 2, students set initial parameter values and observe 
the Netlogo-based simulations corresponding to their models. NetLogo visualizations and 
plotting functions [15] provide students with a dynamic, real-time display of how their 
agents operate in the microworld simulation, thus making explicit the emergence of 
aggregate system behavior (e.g., from graphs of a species population over time). 
The V world provides students the opportunity to perform systematic experiments to 
compare their models’ behavior against behavior generated by an “expert” model. This 
side-by-side comparison of plots and microworld visualizations for the two models makes it 
easier for students to investigate and revise their models. With proper scaffolding, we 
believe that the overall process of model construction, analysis, comparison, and refinement 
will help students gain a better understanding of science phenomena, mathematical concepts 
(e.g., rates), and computational constructs and methods. 
 

 
Figure 2: A screenshot of the Enactment world for the Ecology macro-unit 
 
2.1 Kinematics Unit 
 
Activities in the Kinematics unit were divided into three phases [12, 13]. 
 Phase 1: Turtle Graphics for Constant Speed and Constant Acceleration – We 
introduced students to programming commands by showing them how to manipulate 
different elements in the user interface. Then, we asked them to generate algorithms to draw 
simple shapes (squares, triangles and circles) to familiarize them with programming 
primitives like “forward”, “right turn”, “left turn”, “pen down”, “pen up” and “repeat”. 
Next, we asked students to modify their algorithms and generate spiraling shapes in which 
each line segment is longer (or shorter) than the previous one. This exercise introduced 
students to the “speed-up” and “slow-down” commands, and it gave them a chance to 
explore the relationship between speed, acceleration, and distance.  
 Phase II: Conceptualizing and re-representing a speed-time graph - In this activity, 
students generated shapes such that the length of segments in the shapes were proportional 
to the speed in a given speed-time graph. Figure 3 depicts the speed-time graph provided to 
all students, along with a sample student output where the initial spurt of acceleration is 
represented by a small growing triangular spiral, the gradual deceleration by a large 
shrinking square spiral, and constant speed by a triangle. The focus was on developing 
mathematical measures from meaningful estimation and mechanistic interpretations of the 
graph, and thereby gaining a deeper understanding of concepts like speed and acceleration. 
 Phase III: Modeling motion of an agent to match behavior of an expert model - For this 
activity, students modeled the behavior of a roller coaster as it moved on different segments 
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of a track: up (pulled by a motor),  down, flat , and then up again. Students were first shown 
the simulation results produced by an ‘expert’ roller coaster model in the V world. Then, 
they were asked to conceptualize and build their own agent model to match the observed 
expert roller coaster behavior for all of the segments. 
 

 

Figure 3: Acceleration represented in a speed-time graph and sample student output 
 
2.2 Ecology Unit 
 
For the Ecology unit students modeled a closed fish tank system in two steps: (1) a 
macro-level semi-stable model of the behavior of fish and duckweed; and (2) a micro-level 
model of the waste cycle with bacteria. The macro model included several key relations: (1) 
the food chain and respiration cycles of the fish and duckweed, (2) the macro-level elements 
of the waste cycle (fish produce waste, duckweed consume nitrates), and (3) the 
reproduction of duckweed.   
 The non-sustainability of the macro-level model (the fish and the duckweed gradually 
died off), which students built first, helped them reflect, which, in turn provided the 
transition to the micro model. When prompted to think about why the system was not 
self-sustaining, students could identify the continuously increasing fish waste as the culprit, 
and this provided the trigger to introduce the role of bacteria in the system. 
 At the micro level, students modeled the waste cycle with bacteria and the related 
chemical processes that converted the toxic ammonia in the fish waste to nitrites, and then 
nitrates, which sustained the duckweed. The graphs generated from the expert simulation 
helped students understand the producer-consumer relations: (1) Nitrosomonas bacteria 
consume ammonia and produce nitrites; (2) nitrites are consumed by Nitrobacter bacteria to 
produce nitrates which provide food for the duckweed. 
 
2.3 Sequencing of units and activities 
 
Within each unit, the learning activities were designed to introduce students to (1) the 
agent-based program structure, i.e., agents and their actions, and (2) the general 
computational constructs, i.e., conditionals to model situation-based interactions, loops to 
capture repeated agent behavior, and mathematical operations. The units provided a natural 
sequencing in which students first learned to model and reason with a single agent in 
kinematics and then went on to model multiple agents and their interactions in ecology.  The 
focus in the kinematics unit was on modeling real-world phenomena by generating 
computational abstractions. In the ecology unit, students had the more complex task of 
modeling multiple agent types (e.g., fish and duckweed at the macro level) and composing 
several procedures to define the behavior associated with each agent type (e.g., swim, eat, 
and breathe procedures for fish agents). 
 
 
3. Method 
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The study was conducted with 6th-grade students from an ethnically diverse middle school 
in middle Tennessee. 15 students worked on the system outside the classroom with 
one-on-one guidance from members of our research team (Scaffolded or S-Group), while 
the remaining 9 students in the class worked on the system in the classroom (Classroom or 
C-Group) with some instruction from the researchers and the classroom teacher. The C 
group also received individual help from the researchers if they raised their hand and asked 
for help. The students were assigned to the groups by their classroom teacher. During the 
intervention, five interviewers worked one-on-one with the S-Group students and provided 
verbal scaffolds. In the C-Group, students received minimal one-on-one scaffolding. We 
formulated two research hypotheses: 
1. The intervention will help both groups improve their understanding of science concepts 
as demonstrated by their pre-to-post-test learning gains. 
2. The one-on-one scaffolding will help the S-Group learn more than the C-group.  
As part of the design-based research, we collected and characterized the scaffolds provided 
by the researchers to inform future system development. 
 All students worked on the three phases of the kinematics units before the ecology 
macro and micro units. After completing the ecology micro model, the S group received an 
additional scaffold: they discussed the combined micro-macro model with their assigned 
researcher and were shown how the two models were causally linked to support 
sustainability. Students were given the paper-and-pencil task of building a causal model of 
the cycles, and then prompted to use this representation to explain the effects of removing 
one agent on the stability of the cycle.    
 Students worked on the two science units in hour long sessions for three days each. On 
day 1 of the study, we administered pre-tests for both units. Students worked on the 
kinematics unit from day 2 to 4, and then took the kinematics post-test on day 5. This was 
followed by work on the ecology unit from day 6 to 8, and the ecology post-test on day 9. 
 
 
4. Results and Discussion 
 
4.1 Learning Gains in Kinematics and Ecology  
 
The Kinematics pre/post-test assessed students’ abilities to reason causally about 
mathematical representations of motion and determined whether agent-based modeling 
improved their abilities to generate and explain these representations. Specifically, the 
questions on the test required interpretation of speed versus time graphs and generating 
diagrammatic representations to explain motion in a constant acceleration field. For the 
Ecology unit, the pre- and post-tests focused on students’ understanding of roles of species 
in the ecosystem, interdependence among the species, the waste and respiration cycles, and 
how a specific change in one species affected the others. Some of the questions checked 
students’ declarative knowledge about the fish tank system (Declarative Knowledge Check 
or DKC), others required performing Causal Reasoning about entities using the Declarative 
Knowledge (CRDK), and a Transfer Question (TQ) required students to reason about the 
carbon cycle. An example DKC question asked was “For each of the following species in 
the fish tank,: a) Goldfish, b) Duckweed, c) Nitrosomonas, d) Nitrobacter, mention the 
chemical(s) it directly needs to stay alive”, while an example CRDK question asked was 
“Your fish tank is currently healthy and in a stable state. Now, you decide to remove all 
traces of nitrobacter bacteria from your fish tank. Would this affect a) Duckweed, b) 
Goldfish, c) Nitrosomonas bacteria? Explain your answers.” 
 Students in both groups had higher percentage scores on the kinematics pre-test than 
the ecology pre-test, indicating that they had a better initial understanding of the kinematics 
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domain. However, pre-test scores and the mean TCAP (Tennessee Comprehensive 
Assessment Program) science scores suggested differences in prior knowledge and abilities 
of the S and C groups [significant differences (t=3.15, p<0.005) in mean TCAP science 
scores between the two groups]. Hence we computed a repeated measures ANCOVA with 
TCAP science scores as a covariate to study the interaction between time and condition. 
There was a significant effect of condition on pre-post learning gains in ecology 
(F(1,21)=37.012, p<0.001), and a similar trend was seen in kinematics (F(1,21)=4.101, 
p<0.06). The plots in Figure 4 show that the S group’s adjusted gains were higher than the C 
group in both units.  
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Figure 4: Comparison of gains between groups using TCAP scores as a covariate 
 
 Given the significant interaction between time and condition, we performed paired 
t-tests on pre-to-post gains for each condition. Table 1 shows that the intervention produced 
statistically significant gains for ecology unit, but not for the kinematics unit. However, for 
both units, the S group, which received direct one-on-one scaffolding, showed higher 
learning gains than the C group. 
  
Table 1: Paired t-test results for Kinematics and Ecology pre and post test scores 

 Kinematics Ecology 

 PRE (S.D.) 
(max=24) 

POST (S.D.) 
(max=24) 

t-value P-value  
(2-tailed) 

PRE (S.D.) 
(max=35.5) 

POST (S.D.) 
(max=35.5) 

t-value P-value  
(2-tailed) 

S-Group 
(n=15) 

18.07 
(2.05) 

19.6 (2.29) 2.699 0.017 13.03(5.35) 29.4(4.99) 8.664 <0.001  

C-Group 
(n=9) 

15.56 (4.1) 15.78 (4.41) 0.512 0.622 9.61(3.14) 13.78(4.37) 3.402 <0.01  

 
 The lack of statistical significance in the kinematics unit may be attributed to a ceiling 
effect in the students’ scores. One exception was a question that asked students to 
diagrammatically represent the time trajectory of a ball dropped from the same height on the 
earth and the moon. The students were asked to explain their drawings and generate graphs 
of speed versus time for the two scenarios. The S group showed significant gains (p<0.0001) 
on this question, while the C group showed an increasing trend, although it was not 
significant (p=0.16). 
 For the ecology unit, the S-Group students gained on all categories of questions, 
though all of the gains were not statistically significant. Table 2 reports normalized learning 
gains (gain/maximum possible gain) by question category for both the groups. Significant 
gains were observed on the DKC and CRDK questions, which can be attributed to an 

727



increased awareness of the entities in the fish tank and their relations with other species. For 
example, pre-test results indicated that the students did not initially know about the bacteria 
and their roles. Though students in both groups were told about the role of bacteria during 
the intervention, the supplementary causal-reasoning activity helped the S-group students 
gain a better understanding of the interdependence among the species. The S group’s gains 
on the TQ were not significant due to a ceiling effect (most students had strong prior 
knowledge about the carbon cycle). On the contrary, the C-Group gained only on the CRDK 
questions, though less than the S-Group (F(1,21)=21.06, p<0.001). This can be explained by 
the C group’s minimal scaffolding and, especially, the absence of scaffolds targeted towards 
causal reasoning. 
 
Table 2: Normalized learning gains on categories of Ecology questions  

S-Group normalized gains (P-value) C-Group normalized gains (P-value) 
DKC  CRDK  TQ  DKC  CRDK  TQ  

.865 (<0.0001) .725 (<0.0001) 0.495 (.11) 0 (NA) .192 (<0.01) 0 (NA) 

 
 
4.2 Types of scaffolds provided and their effectiveness  
 
A preliminary post hoc analysis of the recorded interviews was used to categorize the 
different scaffolds provided to the S group, as summarized in Table 3. The SS helped 
students become familiar with the different modeling primitives, the interface elements, and 
the modeling task. The MS helped with specifying correct parameter types for the modeling 
blocks, prompting reflection about how the commands in the model corresponded to the 
observed simulation behavior, and describing how different functionalities of an agent 
needed to be separated into different procedures. The TS were specific to the unit the 
students were working on, and helped clarify the task for the student. The DS suggested that 
students slow down the simulations to study differences between their model’s behavior and 
that of the expert model using the simulations and plots as guides. The students had to 
explain possible reasons for the observed differences, and then identify procedures and 
primitives to modify in order to match expert behavior. The CRS prompted students to 
reason in causal chains about different entities of the system to help understand global 
system behavior. For example, as mentioned in Section 3, the S group investigated a 
combined model of the fish tank and then re-represented the fish-duckweed cycle on paper 
to reason about the roles of different species in the fish tank. 
 
Table 3: Categories of scaffolds provided to the S-Group of students 
Scaffold Category Description 
System-use Scaffolds (SS) Familiarizes students with the UI and use of modeling primitives 

Model-building Scaffolds (MS) 
Helps students correctly parameterize modeling primitives, modularize 
code, and correlate models with the resultant simulations 

Task-based Scaffolds (TS) Helps clarify the particular activity being worked on in a unit 

Debugging Scaffolds (DS) 
Helps students identify differences between their model-generated 
simulations and expert simulations, elicits explanations for the reason(s) 
behind the differences and the methods for rectifying them 

Causal Reasoning Scaffolds 
(CRS) 

Encourages reasoning about system entities in causal chains to 
understand global system behavior 

 
 Although the results in Section 4.1 illustrate the overall effectiveness of the 
scaffolding, they do not identify the utility of particular scaffolds. However, some scaffolds 
likely had a larger impact than others. For example, after adjusting for variations in TCAP 
scores, there was a significant difference in performance between the S and C groups in the 
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Ecology Unit on the CRDK questions (F(1,21)=21.06, p<0.001), which may be a result of 
the CRS provided only to the S-Group. Reasoning causally through multiple agent 
interactions in the fish tank provided a global view of the ecosystem dynamics [1], which 
was essential for understanding concepts of balance and interdependence covered by the 
CRDK questions. 
 
 
5. Conclusion 
 
We have presented a learning environment which integrates computational thinking, visual 
programming, and agent-based modeling and simulations to help middle school students 
learn science across multiple domains. Our results indicate that the learning environment 
helped produce significant learning gains, as measured by pre- and post-test scores, for both 
the Kinematics and Ecology units. We also demonstrated the necessity of scaffolding and 
some types of scaffolds required in such an environment. As next steps, we will integrate 
such scaffolds into the CTSiM environment by building scaffolding tools and providing 
feedback via a virtual mentor agent. Also, now that we have developed common 
computational constructs for modeling in different domains, one of our design goals is to 
help students realize and exploit these commonalities. 
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