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Abstract: Computational Thinking (CT) defines a domain-gaheanalytic approach to
problem solving that combines concepts fundametdatomputing, with systematic
representations for concepts and problem-solvipgagthes in scientific and mathematical
domains. We exploit this trade-off between domaiaeificity and domain-generality to
develop CTSiM (Computational Thinking in Simulatiand Modeling), a cross-domain,
visual programming and agent-based learning enwieoni for middle school science.
CTSiM promotes inquiry learning by providing stuteerwith an environment for
constructing computational models of scientific phena, executing their models using
simulation tools, and conducting experiments to jgara the simulation behavior generated
by their models against that of an expert modeh jpmeliminary study, sixth-grade students
used CTSIM to learn about distance-speed-timeioelain a kinematics unit and then about
the ecological process relations between fish, deekl, and bacteria occurring in a fish
tank system. Results show learning gains in boi#nse units, but this required a set of
scaffolds to help students learn in this environinen
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1. Introduction

Computational thinking (CT) describes a generallygicaapproach to problem solving,
designing systems, and understanding human behfgt5]. It draws on fundamental
concepts in computing and computer science to stppractices (e.g., problem
representation, abstraction, decomposition, vetion) that are central to modeling,
reasoning, and problem solving in scientific andhmamatical disciplines [10,11].

Developing scientific practices and problem-salviskills requires sustained,
immersive educational experiences, which can béemented as learning progressions for
science in K-12 classrooms [7,9]. CT can suppochguogressions in the K-12 science
curricula by integrating its inherent domain gefigravith support for domain specific
representations, reasoning, and analysis of reddwwoblems across multiple domains
[10,11,15]. Balancing and exploiting this trade-dietween domain-generality and
domain-specificity, however, presents an impor&htcational design challenge.

Previous studies on integrating programming witi2Zscience have pointed out a
variety of similar challenges [3,4]. Curricula thhtive effectively addressed these
challenges take advantagereflexivity, which hypothesizes that learning programming in
concert with concepts in another domain can besedisan learning each separately [6].
Several researchers have shown that programmingasnputational modeling can serve as
effective vehicles for learning challenging scieaod math concepts [2,5,8]. Further, many
programming and CT concepts parallel important etspef STEM (Science, Technology,
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Engineering, & Mathematics) learning. For exampgles creation of coherent, formal
representations of scientific phenomena and mattiesheepresentations of scientific laws
are similar to object-oriented programming concegtencapsulation, abstraction, and
generalization. Conversely, the biological concegittaxonomy and inheritance are the
inspiration for class inheritance concepts in paogming.

Leveraging the synergy between CT, science, anl learning, we have designed the
Computational Thinking in Simulation and Modelin@T(SiM) learning environment and
are implementing it using a learning-by-design pesgion. The learning environment
combines visual programming and simulations tovalfor flexible iterations between
initial instruction in the science topic; modelithge appropriate entities and processes using
a visual, agent-based computational framework; Eitimg and studying the behavior of the
model; using explanation and argumentation slallgriderstand and verify the model; and,
applying the developed model and science undelistarid problem-solving tasks. The
learning progression can be implemented over arpssgn of topics.

This paper presents the rationale for the learemgronment design and a two-unit
science sequence (kinematics and ecology) to demabmsour computational thinking
approach across domains. We describe an initiail@ E8idy with 8"-grade students in a
middle Tennessee public school. The results demairghe effectiveness of our approach,
supporting the premise that students’ conceptudérstanding of science topics improves
after engaging in CT-based curricular units. Finalte present the categories of scaffolds
used in the study and discuss the role these $daffkely played in the students’ learning.

2. The CTSIiM learning environment and curricular units

To support learning-by-design activities, CTSIM goises three primary components [11]:
(1) the Construction (C) world, (2) the Enactmdsk \orld, and (3) the Envisionment (V)
world. The C world provides a visual programmindernface where students build
computational models for the science topics theyearning. It includes a library of visual
primitives corresponding to agent actions, sensomglitions qualifying agent actions, and
controls for regulating the program'’s flow of exg@on (e.g., conditionals and loops). Each
visual primitive is defined in terms of an undenlgidomain-independent computational
primitive. Students drag and drop these primitiged arrange them spatially to generate
their computational models, as illustrated in Feglirfor an ecology unit.
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In the E world, illustrated in Figure 2, studes¢s initial parameter values and observe
the Netlogo-based simulations corresponding ta timeidels. NetLogo visualizations and
plotting functions [15] provide students with a dymc, real-time display of how their
agents operate in the microworld simulation, thuakimg explicit the emergence of
aggregate system behavierd, from graphs of a species population over time).

The V world provides students the opportunity tofgen systematic experiments to
compare their models’ behavior against behavioregged by an “expert” model. This
side-by-side comparison of plots and microworldigigzations for the two models makes it
easier for students to investigate and revise thmadels. With proper scaffolding, we
believe that the overall process of model conswagcanalysis, comparison, and refinement
will help students gain a better understanding@rece phenomena, mathematical concepts
(e.g., rates), and computational constructs antoalst
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Figure 2: A screenshot of the Enactment world lier Ecology macro-unit

2.1 Kinematics Unit

Activities in the Kinematics unit were divided inlaree phases [12, 13].

Phase 1: Turtle Graphics for Constant Speed and st Acceleration- We
introduced students to programming commands by sigpwhem how to manipulate
different elements in the user interface. Thenasled them to generate algorithms to draw
simple shapes (squares, triangles and circles)amailiarize them with programming
primitives like “forward”, “right turn”, “left turrf, “pen down”, “pen up” and “repeat”.
Next, we asked students to modify their algorittand generate spiraling shapes in which
each line segment is longer (or shorter) than tieeipus one. This exercise introduced
students to the “speed-up” and “slow-down” commaraisl it gave them a chance to
explore the relationship between speed, acceleaind distance.

Phase II: Conceptualizing and re-representing aesptime graph In this activity,
students generated shapes such that the lengéywiesits in the shapes were proportional
to the speed in a given speed-time graph. Figulep&ts the speed-time graph provided to
all students, along with a sample student outpwrevtithe initial spurt of acceleration is
represented by a small growing triangular spirbe gradual deceleration by a large
shrinking square spiral, and constant speed byaagle. The focus was on developing
mathematical measures from meaningful estimati@hraachanistic interpretations of the
graph, and thereby gaining a deeper understandiognaepts like speed and acceleration.

Phase IIl: Modeling motion of an agent to matchdéor of an expert modeFor this
activity, students modeled the behavior of a ratmaster as it moved on different segments
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of a track: up (pulled by a motor), down, flahdahen up again. Students were first shown
the simulation results produced by an ‘expert’aoltoaster model in the V world. Then,
they were asked to conceptualize and build theim agent model to match the observed
expert roller coaster behavior for all of the segtae

\\\.\.%_
time (seconds) \

Figure 3: Acceleration represented in a speed-jraph and sample student output

speed (m/s)

2.2 Ecology Unit

For the Ecology unit students modeled a closed fastk system in two steps: (1) a
macro-level semi-stable model of the behavior &l f.ind duckweed; and (2) a micro-level
model of the waste cycle with bacteria. The macodehincluded several key relations: (1)
the food chain and respiration cycles of the fistt duckweed, (2) the macro-level elements
of the waste cycle (fish produce waste, duckweedswme nitrates), and (3) the
reproduction of duckweed.

The non-sustainability of the macro-level modeg(fish and the duckweed gradually
died off), which students built first, helped themflect, which, in turn provided the
transition to the micro model. When prompted tankhabout why the system was not
self-sustaining, students could identify the cambiasly increasing fish waste as the culprit,
and this provided the trigger to introduce the afl®acteria in the system.

At the micro level, students modeled the wastdecydth bacteria and the related
chemical processes that converted the toxic ammoritee fish waste to nitrites, and then
nitrates, which sustained the duckweed. The grgeherated from the expert simulation
helped students understand the producer-consuraions: (1) Nitrosomonasbacteria
consume ammonia and produce nitrites; (2) nitatesconsumed hylitrobacterbacteria to
produce nitrates which provide food for the duckevee

2.3 Sequencing of units and activities

Within each unit, the learning activities were desd to introduce students to (the
agent-based program structyre.e, agents and their actions, and (e general
computational constructs, i,econditionals to model situation-based interadjdoops to
capture repeated agent behavior, and mathemagieghtions. The units provided a natural
sequencing in which students first learned to madel reason with a single agent in
kinematics and then went on to model multiple agand their interactions in ecology. The
focus in the kinematics unit was on modeling real@ phenomena by generating
computational abstractions. In the ecology uniidents had the more complex task of
modeling multiple agent types (e.g., fish and dusgavat the macro level) and composing
several procedures to define the behavior assdcveitt each agent type (e.g., swim, eat,
and breathe procedures for fish agents).

3. Method
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The study was conducted with 6th-grade students & ethnically diverse middle school
in middle Tennessee. 15 students worked on theemsysiutside the classroom with
one-on-one guidance from members of our reseasrh (&caffolded or S-Group), while
the remaining 9 students in the class worked orsystem in the classroom (Classroom or
C-Group) with some instruction from the researchard the classroom teacher. The C
group also received individual help from the reskars if they raised their hand and asked
for help. The students were assigned to the groypkeir classroom teacher. During the
intervention, five interviewers worked one-on-onigwhe S-Group students and provided
verbal scaffolds. In the C-Group, students receimagimal one-on-one scaffolding. We
formulated two research hypotheses:

1. The intervention will help both groups improweit understanding of science concepts
as demonstrated by their pre-to-post-test leargaigs.

2. The one-on-one scaffolding will help the S-Grdegrn more than the C-group.

As part of the design-based research, we collemtedcharacterized the scaffolds provided
by the researchers to inform future system deveépm

All students worked on the three phases of therkatics units before the ecology
macro and micro units. After completing the ecolaggro model, the S group received an
additional scaffold: they discussed the combinedronmacro model with their assigned
researcher and were shown how the two models wausally linked to support
sustainability. Students were given the paper-asmtihtask of building a causal model of
the cycles, and then prompted to use this reprasentto explain the effects of removing
one agent on the stability of the cycle.

Students worked on the two science units in hong sessions for three days each. On
day 1 of the study, we administered pre-tests fath kunits. Students worked on the
kinematics unit from day 2 to 4, and then took kimematics post-test on day 5. This was
followed by work on the ecology unit from day 6&pand the ecology post-test on day 9.

4. Results and Discussion
4.1 Learning Gains in Kinematics and Ecology

The Kinematics pre/post-test assessed studentditiesbito reason causally about
mathematical representations of motion and detexchiwhether agent-based modeling
improved their abilities to generate and explaiasth representations. Specifically, the
guestions on the test required interpretation @edpversus time graphs and generating
diagrammatic representations to explain motion icoastant acceleration field. For the
Ecology unit, the pre- and post-tests focused odestts’ understanding of roles of species
in the ecosystem, interdependence among the spdwesaste and respiration cycles, and
how a specific change in one species affected there Some of the questions checked
students’ declarative knowledge about the fish sygtem (Declarative Knowledge Check
or DKC), others required performing Causal Reagpaimout entities using the Declarative
Knowledge (CRDK), and a Transfer Question (TQ) mglistudents to reason about the
carbon cycle. An example DKC question asked Was each of the following species in
the fish tank,: a) Goldfish, b) Duckweed, c) Nitnw®nas, d) Nitrobacter, mention the
chemical(s) it directly needs to stay alivethile an example CRDK question asked was
“Your fish tank is currently healthy and in a stabtate. Now, you decide to remove all
traces of nitrobacter bacteria from your fish tankiould this affect a) Duckweed, b)
Goldfish, c) Nitrosomonas bacteria? Explain yousaers.”

Students in both groups had higher percentagesaor the kinematics pre-test than
the ecology pre-test, indicating that they hadtéebénitial understanding of the kinematics
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domain. However, pre-test scores and the mean TCPdhnessee Comprehensive
Assessment Program) science scores suggestecddésrin prior knowledge and abilities
of the S and C groups [significant differences (153p<0.005) in mean TCAP science
scores between the two groups]. Hence we computepeated measures ANCOVA with
TCAP science scores as a covariate to study tleeaiction between time and condition.
There was a significant effect of condition on pwost learning gains in ecology
(F(1,21)=37.012p<0.001), and a similar trend was seen in kinema#¢4,21)=4.101,
p<0.06). The plots in Figure 4 show that the S gi®adjusted gains were higher than the C
group in both units.
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Figure 4: Comparison of gains between groups UEWP scores as a covariate

Given the significant interaction between time aahdition, we performed paired
t-tests on pre-to-post gains for each conditiotl&a shows that the intervention produced
statistically significant gains for ecology unitytmot for the kinematics unit. However, for
both units, the S group, which received direct onene scaffolding, showed higher
learning gains than the C group.

Table 1: Paired t-test results for Kinematics and Ecology/gnd post test scores

Kinematics Ecology

PRE (S.D.) | POST (S.D.)| t-value | P-value [PRE (S.D.) |POST (S.D.}f-value|P-value

(max=24) | (max=24) (2-tailed) [(max=35.5)|(max=35.5) (2-tailed)
S-Group | 18.07 19.6 (2.29) 2.699 | 0.017 13.03(5.3p) 29.4(4.99) #8.660.001
(n=15) (2.05)
C-Group | 15.56 (4.1) | 15.78 (4.41) 0.512| 0.622 9.61(3.14) 78@L.37)|3.402| <0.01
(n=9)

The lack of statistical significance in the kingmms unit may be attributed to a ceiling
effect in the students’ scores. One exception waguestion that asked students to
diagrammatically represent the time trajectory b&l dropped from the same height on the
earth and the moon. The students were asked taiexpkir drawings and generate graphs
of speed versus time for the two scenarios. Th®&ugshowed significant gaing<0.0001)
on this question, while the C group showed an esirey trend, although it was not
significant £=0.16).

For the ecology unit, the S-Group students gaioedall categories of questions,
though all of the gains were not statistically gigant. Table 2 reports normalized learning
gains (gain/maximum possible gain) by questiongmtefor both the groups. Significant
gains were observed on the DKC and CRDK questiasgch can be attributed to an
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increased awareness of the entities in the fidhdad their relations with other species. For
example, pre-test results indicated that the stisdsid not initially know about the bacteria
and their roles. Though students in both groupewad about the role of bacteria during
the intervention, the supplementary causal-reagoaativity helped the S-group students
gain a better understanding of the interdependanuing the species. The S group’s gains
on the TQ were not significant due to a ceilingeeff(most students had strong prior
knowledge about the carbon cycle). On the conttaeyC-Group gained only on the CRDK
guestions, though less than the S-Group (F(1,21062(4<0.001). This can be explained by
the C group’s minimal scaffolding and, especidliyg absence of scaffolds targeted towards
causal reasoning.

Table 2: Normalized learning gains on categories of Ecolgggstions

S-Group normalized gains (P-value) C-Group norredligains (P-value)
DKC CRDK TQ DKC CRDK TQ
.865 (<0.0001), .725 (<0.0001 0.495 (.112)) 0 (NA) 921<0.01) 0 (NA)

4.2 Types of scaffolds provided and their effentgs

A preliminary post hoc analysis of the recordeckiviews was used to categorize the
different scaffolds provided to the S group, as samzed in Table 3. The SS helped
students become familiar with the different modglmimitives, the interface elements, and
the modeling task. The MS helped with specifyingect parameter types for the modeling
blocks, prompting reflection about how the commaimdthe model corresponded to the
observed simulation behavior, and describing hoffemint functionalities of an agent
needed to be separated into different procedurkes. TIS were specific to the unit the
students were working on, and helped clarify tis& tar the student. The DS suggested that
students slow down the simulations to study diffiess between their model’s behavior and
that of the expert model using the simulations pluds as guides. The students had to
explain possible reasons for the observed diffeegnand then identify procedures and
primitives to modify in order to match expert beiwaly The CRS prompted students to
reason in causal chains about different entitieshefsystem to help understand global
system behavior. For example, as mentioned in @e@i the S group investigated a
combined model of the fish tank and then re-represkthe fish-duckweed cycle on paper
to reason about the roles of different speciekérfish tank.

Table 3: Categories of scaffolds provided to th&rBup of students

Scaffold Category Description

System-use Scaffolds (SS) Familiarizes students té¢ Ul and use of modeling primitives

L Helps students correctly parameterize modeling itiies, modularize
Model-building Scaffolds (MS) code, and correlate models with the resultant sitiars

Task-based Scaffolds (TS) Helps clarify the paléicactivity being worked on in a unit
Helps students identify differences between thewdetgenerated
Debugging Scaffolds (DS) simulations and expert simulations, elicits exptames for the reason(s)
behind the differences and the methods for reciifyhem
Causal Reasoning Scaffolds Encourages reasoning about system entities in katlsains to
(CRS) understand global system behavior

Although the results in Section 4.1 illustrate tbeerall effectiveness of the
scaffolding, they do not identify the utility of gigular scaffolds. However, some scaffolds
likely had a larger impact than others. For examafieer adjusting for variations in TCAP
scores, there was a significant difference in peréoce between the S and C groups in the
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Ecology Unit on the CRDK questions (F(1,21)=214€0.001), which may be a result of
the CRS provided only to the S-Group. Reasoningsagu through multiple agent
interactions in the fish tank provided a globalwief the ecosystem dynamics [1], which
was essential for understanding concepts of balandeinterdependence covered by the
CRDK questions.

5. Conclusion

We have presented a learning environment whiclgiates computational thinking, visual
programming, and agent-based modeling and simuaktio help middle school students
learn science across multiple domains. Our resutlisate that the learning environment
helped produce significant learning gains, as nreaisioly pre- and post-test scores, for both
the Kinematics and Ecology units. We also demotedrthe necessity of scaffolding and
some types of scaffolds required in such an enment. As next steps, we will integrate
such scaffolds into the CTSIM environment by buitfliscaffolding tools and providing
feedback via a virtual mentor agent. Also, now twa have developed common
computational constructs for modeling in differeloimains, one of our design goals is to
help students realize and exploit these commoesliti

References

[1] Basu, S., & Biswas, G. (2011). Multiple Repnatsgions to Support Learning of Complex Ecological
Processes in Simulation EnvironmentsPhoceedings of the 19th International Conferenc&€omputers
in Education. Chiang Mai, Thailand.

[2] Blikstein P. & Wilensky, U. (2009). An Atom iKnown by the Company it Keeps: A Constructionist
Learning Environment for Materials Science UsingeAgBased Modelingnt Jounal of Computers for
Math Learning, 181-119.

[3] diSessa, A., Hammer, D., Sherin, B., and Kotpa&ki, T. (1991). Inventing Graphing: Meta
Representational Expertise in Childréournal of Mathematical Behavipt0, 117-160.

[4] Guzdial, M. (1994). Software-realized scaffoldi to facilitate programming for science learning.
Interactive Learning Environment4(1), 1-44.

[5] Hambrusch, S., Hoffmann, C., Korb, J.T., Haugsh, and Hosking, A.L. (2009). A multidisciplinary
approach towards computational thinking for sciemzgors. InProceedings of the 40th ACM technical
symposium on Computer science education . ACM, ety NY, USA, 183-187

[6] Harel, I. & Papert, S. (1991). Software deségna learning environmer@onstructionism,51-52.

[7] Krajcik, J., McNeill, K. L. & Reiser, B. (2008)_earning-goals-driven design model: Curriculunenials
that align with national standards and incorpopatgect-based pedagodycience Educatiqr92(1), 1-32.

[8] Kynigos, C. (2007). Using half-baked microwasltb challenge teacher educators’ knowihmyrnal of
Computers for Math Learnind.2(2), 87-111.

[9] Lehrer, R., Schauble, L., & Lucas, D. (2008upgorting development of the epistemology of inguir
Cognitive Developmen23 (4), 512-529.

[10] NRC (2010). Report of a Workshop on The Scape Nature of Computational Thinking.

[11] Sengupta, P., Kinnebrew, J., Biswas, G., aledkCD. (2012). Integrating Computational Thinkiwih
K-12 Science Education: A Theoretical Framewdtfoceedings of the 4th International Conference on
Computer Supported Education

[12] Sengupta, P., & Farris, A.V. (2012). Learnikimematics in Elementary Grades Using Agent-based
Computational Modeling: A Visual Programming Baségproach. In Proceedings of the 11th
International Conference on Interaction Design &ildren, pp 78 — 87.

[13] Sengupta, P., Farris, A.V., & Wright, M. (201From Agents to Continuous Change via Aesthetics:
Learning Mechanics with Visual Agent-based Compoteatl Modeling. Technology, Knowledge &
Learning.Vol. 17 (1 - 2), pp 23 - 42.

[14] Wilensky, U. (1999). NetLogo. http://ccl.novtlestern.edu/netlogo/. Center for Connected Learairdy
Computer-Based Modeling, Northwestern Universityaiston, IL.

[15] Wing, J. M. (2008). Computational thinking atidnking about computing?hilosophical Transactions
of the Royal Societypl. 366, pp.

729



