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Abstract: Deep learning-based knowledge tracing (DLKT) models have been regarded 
as the promising solution to estimate learners’ knowledge states and predict their future 
performance based on historical exercise records. However, the increasing complexity 
and diversity make DLKT models still difficult for users, typically including both learners 
and teachers, to understand models’ estimation results, directly hindering the model’s 
deployment and application. Previous studies have explored using methods from 
explainable artificial intelligence (xAI) to interpret DLKT models, but the methods have 
been limited in their generalizing capability and inefficient interpreting procedures. To 
address these limitations, we proposed a simple but efficient model-agnostic 
interpreting method, called Gradient*Input, to explain the predictions made by these 
models in two datasets. Comprehensive experiments have been conducted on the 
existing five DLKT models with representative neural network architectures. The 
experiment results showed that the method was effective in explaining the predictions 
of DLKT models. Further analysis of the interpreting results revealed that all five DLKT 
models share a similar rule in predicting learners’ item responses, and the role of skill 
and temporal information was found and discussed. We also suggested potential 
avenues for investigating the interpretability of DLKT models. 
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1. Introduction 
 
The ability to automatically identify learners’ knowledge states is crucial for personalized 
learning, and it plays a fundamental role in sustaining learning motivation (Pelánek et al., 
2017) and improving academic performance (Koedinger & Aleven, 2016). To achieve this, 
researchers have developed a range of knowledge tracing (KT) models by leveraging on 
learners’ historical exercise records to predict their future performance. With the 
advancement of artificial intelligence (AI), KT models that employ deep learning techniques 
are considered effective due to their strong capability to capture inherent information. 
However, the complex structures and large number of variables in the deep learning-based 
knowledge tracing (DLKT) models make them difficult for users (e.g., teachers, students, 
and education researchers) to understand the models’ decisions (Tsai & Gasevic, 2017), 
which may reduce users’ trust and accordingly hinder the DLKT models’ deployment and 
application, as indicated in the case of automated recommendation systems (Dietvorst et al., 
2015). Additionally, blindly trusting the incorrect decisions would cause a wrong diagnosis of 
knowledge status and accordingly reduce learning efficiency. 
 To address the interpretability issue in deep learning knowledge tracing (DLKT) 
models, researchers have started exploring solutions. One approach is the incorporation 
component of the model remains a black box. Another approach is using the explainable 
artificial intelligence (xAI) techniques to interpret DLKT models, such as the model-specific 
layer-wise relevance propagation (LRP) method (Lu et al., 2020; Lu et al., 2022), but it is 
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only applicable to the specific DLKT models and hard to be generalized to other DLKT 
models. The DeepSHAP method has been also proposed as a more generic method for 
interpreting DLKT models (Wang et al., 2022), but it heavily relies on reference samples, 
which are normally scarce in the real cases. In addition, it is still in lack of systematic study 
on interpreting the existing representative DLKT models, typically including the recurrent 
neural networks (RNNs), memory-augmented neural networks (MANNs), attention, graph 
neural networks (GNNs), and convolutional neural networks (CNNs). 
 We thus propose a cost-effective and generic method to interpret the diverse DLKT 
models, where the model-agnostic interpreting method is designed to explain the predictions 
made by the five representative DLKT models. The comprehensive experiments have 
validated the effectiveness of the proposed method. Further investigations show that despite 
their different configurations, the five DLKT models follow a similar rule for estimating 
learners’ knowledge states and making predictions. 
 
2. Related Work 
 
2.1 Deep Learning based Knowledge Tracing (DLKT) Models 
 
DKT (Piech et al., 2015) was the pioneer DLKT model, and it utilized RNNs to achieve 
superior performance compared to traditional Bayesian knowledge tracing (BKT) (Corbett & 
Anderson, 1994). Researchers subsequently improved upon the DKT model by incorporating 
additional input features such as question difficulty (Sonkar et al., 2020) and extending the 
model’s structure such as adding another layer of RNN (Su et al., 2018). Other types of deep 
neural networks have also been adopted for use in DLKT models. For example, because 
DKT summarizes the states of all concepts in a single vector, memory-augmented neural 
networks (MANNs) were used to build the DKVMN (Zhang et al., 2017), SKVMN 
(Abdelrahman & Wang, 2019), and EKT (Liu et al., 2019) models, which store the status of 
each concept in a separate space. Due to the limited performance of RNN-based and 
MANN-based KT models on concepts with little data, the attention mechanism has been 
employed to extract the similarity between different concepts and questions, leading to the 
development of the SAKT (Pandey & Karypis, 2019) and AKT (Ghosh et al., 2020) models. 
To capture the interconnected relationship between concepts and questions, graph neural 
networks (GNNs) have been used to build relationship graphs, resulting in the creation of the 
GKT (Nakagawa et al., 2019) and GIKT (Y. Yang et al., 2020) models. Additionally, 
convolutional neural networks (CNNs) have been explored for use in DLKT models, resulting 
in the development of the CKT (Shen et al., 2020) and CAKT (S. Yang et al., 2020). 
 
2.2 Interpreting Methods for Deep Learning Models 
 
Researchers have developed multiple interpreting methods to understand the internal 
workings and individual decisions of non-transparent deep learning models. These 
interpreting methods can be classified into model-specific and model-agnostic approaches 
(Adadi & Berrada, 2018). The former ones are tailored to the models with specific structures, 
while the latter ones can be applied to a wider range of models. Model-agnostic interpreting 
techniques include visualization (Goldstein et al., 2015), knowledge extraction (Hinton et al., 
2015), influence methods (Cortez & Embrechts, 2011), and example-based explanations 
(Wachter et al., 2017). Influence methods are commonly used to explain models by 
estimating the importance or contribution of a feature to the model’s prediction. Popular 
methods in this category include perturbation-based and backpropagation-based 
approaches, such as Gradient (Simonyan et al., 2013) and DeepSHAP (Lundberg & Lee, 
2017). 

Although there are a large number of interpreting methods in the field of explainable AI 
(xAI), currently only two methods (i.e., LRP and DeepSHAP) have been utilized to interpret 
DLKT models (Lu et al., 2020; Wang et al., 2022). These methods are limited in their 
generalizing capability or their high computational complexity, leading to the need for simpler 
yet effective methods to provide explanations of the diverse and complex DLKT models. 
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3. Interpreting Method

3.1 Method

We propose to utilize an existing xAI method, called Gradient*Input (Arras et al., 2019), for 
interpreting DLKT models. Compared to other methods previously investigated for DLKT 
models (i.e., LRP and DeepSHAP), Gradient*Input has two advantages. First, it can be 
applied to a wide range of models regardless of their internal structure. Second, it has 
relatively low computational complexity, requiring only one forward pass and one backward 
pass to obtain an explanation, and does not rely on auxiliary information, such as the 
reference samples used in DeepSHAP. And this method has been demonstrated to be 
effective in various tasks (Arras et al., 2019; Shrikumar et al., 2017).

The Gradient*Input method explains the model prediction by decomposing it into the 
contributions of the input features. Formally, given an input with features, the prediction 
of a deep learning model on class is a highly non-linear function ( ). Based on Taylor 
expansion (Li et al., 2016; Montavon et al., 2017), the non-linear prediction ( ) is 
approximated by a linear function, as shown in Equation 1:( ) ( ) + (1)

where represents the i-th feature in the input, ( ) represents the partial derivative of ( ) with respect to , and  reflects the contribution of feature to the prediction.

(a) Forward Prediction (b) Compute Feature Derivatives

(c) Element-wise Product (d) Perform a Sum Operation
Figure 1. The interpreting procedure of Gradient*Input for DLKT models.

3.2 Explaining DLKT Models

Figure 1 illustrates the procedure of using Gradient*Input to interpret the predictions of DLKT 
models. Specifically, given a set of question-answer records from learners, denoted as {( ,

), ( , ), ..., ( , )}, DLKT models can make predictions about their future performance, 
e.g., the probability ( + 1) of correctly answering a future question , as Figure 1(a)
shows. To explain the prediction, Gradient*Input uses backpropagation to calculate the
partial derivative of the prediction with respect to the input features, as depicted in Figure 
1(b). Then, the element-wise product between the feature and its derivative is performed, 
which allows it to obtain the feature relevance (i.e., contributions) for each question-answer 
record, as Figure 1(c) indicates. Because each record is represented as a vector (e.g., an 
embedding or a one-hot vector with m dimensions), the sum of the feature relevance in a 
question-answer record can be used to determine the overall relevance of the record to the 
prediction (i.e., QA relevance), as shown in Figure 1(d).

( )
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4. Evaluation  
 
4.1 Construction of DLKT Models 
 
We select five typical and representative existing DLKT models for the experiment, including 
(1) DKT (Piech et al., 2015), the first DLKT model that adopts RNN as its inner structure; (2) 
DKVMN (Zhang et al., 2017), a DLKT model that adopts MANN to store concept status; (3) 
AKT (Ghosh et al., 2020), a DLKT model that employs attention to extract similarity between 
concepts and questions; (4) GKT (Nakagawa et al., 2019), A DLKT model that uses GNN to 
build skill relationship graphs; (5) CKT (Shen et al., 2020), A DLKT model that utilizes CNN 
to model individualization. 
 
4.1.1 Dataset 
 
We adopt two commonly used KT datasets, ASSISTment2009 and ASSISTment2015 (Feng 
et al., 2009). Specifically, the datasets were preprocessed to eliminate repetitive data and 
data without skill or question tags, and the length of the learner answer sequence was set to 
range from 10 to 200. After preprocessing, ASSISTment2009 contained 325,637 records on 
110 skills and ASSISTment2015 contained 682,223 records on 100 skills. 80% of the data 
was randomly chosen for training, while the remaining 20% was used for testing. 
 
4.1.2 Model Training 
 
For all five models, we uniformly set the optimizer, dropout rate, mini-batch size, initial 
learning rate, and iteration epoch to Adam, 0.5, 64, 0.005, and 100, respectively. For the 
DKT model, the hidden dimension was set to 64. For the DKVMN model, the state 
dimension was set to 64 and the memory size was set to 110 for the ASSISTment2009 
dataset and 100 for the ASSISTment2015 dataset. For the AKT model, the hidden 
dimension was set to 256 and the number of heads was set to 8. For the GKT model, the 
hidden dimension was set to 64 and the number of heads was set to 4. For the CKT model, 
the hidden dimension was set to 64. The performance (i.e., AUC and accuracy) of these five 
DLKT models in ASSISTment2009 and ASSISTment2015 can be seen in Table 1. Note that 
given the focus of this work is not on the model performance, we do not optimize the 
accuracy for each model. 
 
Table 1. The performance of five DLKT models in ASSISTment2009 and ASSISTment2015. 

Dataset Metric ASSISTment2009 ASSISTment2015 

RNN-based DKT AUC 0.74 0.72 
ACC 0.72 0.73 

MANN-based DKVMN AUC 0.76 0.72 
ACC 0.74 0.75 

Attention-based AKT AUC 0.75 0.73 
ACC 0.72 0.75 

GNN-based GKT AUC 0.74 0.72 
ACC 0.73 0.74 

CNN-based CKT AUC 0.75 0.72 
ACC 0.72 0.74 

 
4.2 Method Validation 
 
We first validate the capability of the proposed method on interpreting the decisions of DLKT 
models. We split the test data for both ASSISTment2009 and ASSISTment2015 into 
sequences of 15 question-answer records, resulting in 48,670 sequences for 
ASSISTment2009 and 97,637 sequences for ASSISTment2015. In each sequence, the first 
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14 records were used as input to predict the correctness of the last record, allowing us to 
identify correctly-predicted sequences. The number of positive and negative predictions 
made by all five DLKT models in each dataset is shown in Table 2. By applying the proposed 
method, we could calculate the relevance of each question-answer record to the prediction.

Table 2. The number of positive and negative predictions in correctly-predicted sequences.

DLKT Models ASSISTment2009 ASSISTment2015
Positive Negative Sum Positive Negative Sum

RNN-based DKT 26,258 8,777 35,035 60,322 10,865 71,187
MANN-based DKVMN 27,477 7,660 35,137 62,975 8,694 71,669
Attention-based AKT 27,271 7,628 34,899 61,787 9,314 71,101
GNN-based GKT 27,005 8,066 35,071 59,690 11,229 70,919
CNN-based CKT 26,629 8,679 35,308 63,101 8,992 72,093

Figure 2. Question-answer record deletion results for DLKT models in ASSISTment2009.

Figure 3. Question-answer record deletion results for DLKT models in ASSISTment2015.

To validate the effectiveness of the relevance of each question-answer record, we 
further conducted the experiment by removing question-answer records with high relevance 
from each sequence and observing the resulting change in accuracy. Specifically, we 
deleted question-answer records in the descending order of relevance for positive 
predictions (i.e., predictions of a correct response in the last question), and in the ascending 
order of relevance for negative predictions (i.e., predictions of a wrong response in the last 
question). By observing the change in accuracy, we could evaluate whether question-answer 
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records with high relevance were more important for model predictions. We also performed 
random removal of records for comparison.

Figure 2 and 3 show the results of deleting question-answer records for all five DLKT 
models in the ASSISTment2009 and ASSISTment2015 datasets, where DLKT-GI represents 
the proposed method and DLKT-R means random deletion. As can be seen, compared to 
random deletion, the proposed method leads to a significant drop in accuracy. For example, 
in the case of the DKT model, removing 5 question-answer records based on relevance 
causes the prediction accuracy to drop from 100% to around 57%, while random deletion 
only slightly reduces the accuracy to around 95%. Similarly, for other DLKT models, 
deletions based on relevance cause the accuracy to drop to a range between 65% and 71%, 
while random deletions only reduce the accuracy to around 95%. Overall, the results 
suggest that the proposed method is effective in explaining the decisions of all five DLKT 
models.

4.3 Interpreting Model Rules

With the validated QA relevance, we further interpret how the DLKT models make 
predictions. We mainly analyze how the model input question-answer records influence the 
model output, i.e., the predictions on learners’ future performance. In particular, we consider 
the effects of both the skill information (i.e., the specific skill being tested) and temporal 
information (i.e., when the exercise was completed) on the model’s decision.

We selected correctly-predicted sequences and set the skill and position of the last 
record in each sequence as the target skill and prediction position. Then each question-
answer record in the sequence was tagged as either Same skill or Different skill based on 
whether its skill matched the target skill, and Recent (i.e., the first half QA records) and 
Distant (i.e., the second half QA records) based on its distance from the prediction position. 
This resulted in four groups (i.e., 2 × 2): Distant & Same skill, Distant & Different skill, Recent 
& Same skill, and Recent & Different skill. For each group, the absolute relevance of each 
question-answer record was summed to compute the mean. We computed and compared 
the mean of four groups among all correctly-predicted sequences across the five DLKT 
models in the ASSISTment2009 and ASSISTment2015 datasets.

    
(a) ASSISTment2009                                       (b) ASSISTment2015

Figure 4. Skill-distance relevance comparison for RNN-based DKT.

    
(a) ASSISTment2009                                       (b) ASSISTment2015
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Figure 5. Skill-distance relevance comparison for MANN-based DKVMN.

    
(a) ASSISTment2009                                       (b) ASSISTment2015

Figure 6. Skill-distance relevance comparison for Attention-based AKT.

    
(a) ASSISTment2009                                       (b) ASSISTment2015

Figure 7. Skill-distance relevance comparison for GNN-based GKT.

    
(a) ASSISTment2009                                       (b) ASSISTment2015

Figure 8. Skill-distance relevance comparison for CNN-based CKT.

The results, shown in Figure 4, 5, 6, 7, and 8, indicate that for all five DLKT models, 
the recent-same-skill records (i.e., records that are close to the prediction position and on 
the target skill) have the highest relevance to the prediction, while those distant-different-skill
records (i.e., records that are far from the prediction position and on non-target skills) have 
the lowest relevance. For example, in the case of AKT, the relevance of recent-same-skill
records is approximately 0.036 in both the ASSISTment2009 and ASSISTment2015 
datasets, while the relevance of distant-different-skill records is only about 0.005. The other 
four DLKT models show similar results for these two groups. Furthermore, it is difficult to 
differentiate between the relevance of recent-different-skill records or distant-same-skill 
records, as these groups show similar relevance in some cases (e.g., DKT and CKT) and 
differing relevance in others (e.g., DKVMN in ASSISTment2009 and ASSISTment2015).

We also find that the same skill records are more sensitive to distance (i.e., time) 
compared to different skill records. Specifically, for all five DLKT models in both 
ASSISTment2009 and ASSISTment2015, the average relevance difference between recent-
same-skill records and distant-same-skill records is much larger than that between recent-
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different skill records and distant-different-skill records. In contrast, distance seems to have a 
small effect on the relevance of different skill records for model prediction. For instance, the 
relevance of recent-same-skill records for the DKT model in ASSISTment2015 is about 
0.055, 0.045 higher than distant-same-skill records, while the difference between recent-
different-skill records and distant-different-skill records is close to 0.002. Other DLKT models 
show similar results.

Based on the findings discussed above, we conducted an additional experiment to 
further investigate the influence of skill and distance information on the decisions of DLKT 
models. Specifically, for each input sequence of length 15, we excluded the records that 
were distant from the prediction position and on non-target skills (i.e., distant-different-skill 
records) and thus only kept the records that were close to the prediction position or on the 
target skill (i.e., recent-same-skill records, recent-different-skill records, and distant-same-
skill records). The leftover records made up 73% of the raw records in the ASSISTment2009 
dataset and 63% in the ASSISTment2015 dataset. We then compared the model prediction 
performance with cases using all the raw records.

Figure 9 illustrates the experiment results: we see that for all five DLKT models, 
despite containing significantly fewer data points, the models with the leftover records have 
similar prediction accuracy to the models with raw full sequences. For example, DKVMN 
achieves 0.734 in accuracy with 1,464,555 records in ASSISTment2015. After excluding 
about 37% of data, the accuracy of DKVMN remains at 0.734 with 932,799 records. The 
experiment results partially validate the findings and the rules that how the DLKT models 
utilize the skill and distance information to make the decision.

      
(a) ASSISTment2009                                       (b) ASSISTment2015

Figure 9. The influence of skill and distance on the decisions of DLKT models.

5. Conclusion

In this work, we propose a simple and efficient xAI method to address the interpretability 
issue of increasingly complex and diverse DLKT models. The method only requires a lower 
complexity and can be used to explain a wide range of DLKT models. The experiment 
results on five DLKT models in two datasets validate the effectiveness of the proposed 
method. Further analysis of the explanations reveals that all five DLKT models use a similar 
rule when making the decision: question-answer records that are close to the predicted 
question and on the same skill as the predicted question are found to be the most relevant 
indicators, while records that are distant and on different skills are the least important. We 
also have found that records of the same skill are more sensitive to changes in distance 
compared to records of different skills. Additionally, it is also observed that using fewer but 
relevant question-answer records to make predictions can achieve similar accuracy as using 
full sequences, which supports the findings about the decision rules of DLKT models.

This work has significant impacts on practice. First, the rules obtained can be 
integrated into intelligent tutoring systems that utilize DLKT models. Automatically identifying 
learners' knowledge states and providing explanations can potentially increase their trust in 
the system and help them adjust their learning behavior when receiving incorrect diagnoses 
of their knowledge states. Second, the findings about the decisions of DLKT models 
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contribute to making these models more transparent and provide valuable insights for 
researchers to design more interpretable KT models. It can be a promising direction for 
future research to evaluate the impact of these explanations on education and consider the 
effect of skill and temporal information when designing DLKT models. 
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