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Abstract: Providing explanations in educational recommender systems are supposed 
to increase students’ awareness of the recommendations, trust toward the system, 
motivation to adopt the recommendations. With the expectation to have a higher 
prediction accuracy, more and more complex recommendation models are developed, 
which are difficult to explain. It remains debatable that whether there exists a trade-off 
between the accuracy and explainability of recommender systems. In this study, we 
focus on the explainable math quiz recommender system--- Naïve Concept Explicit 
(Naïve CE) proposed in our previous work. We are interested in knowing whether the 
explainable Naïve CE has a good prediction accuracy compared with a powerful but 
less explainable model--- Matrix Factorization (MF). We also proposed a combined 
model CE+MF to preserve the explainability of Naïve CE and predicting power of MF. 
We then used a long-term quiz answering dataset to evaluate the models’ accuracy as 
to predicting students’ correctness rate of the quizzes. The results revealed that 1) The 
explainable model Naïve CE had a lower accuracy than the less model MF given the 
sparse dataset; 2) Combining two models achieved a moderate accuracy in predicting 
students’ answers while preserving the explainability of Naïve CE. Our study served as 
an example of how to develop an inherently explainable educational recommender 
system and how to improve the accuracy by integrating more complex models. 
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1. Introduction 
 
To improve learning, educational recommender systems provide recommendations based 
different criterion including learning activities (Afzaal et al., 2021), knowledge states (Ai et 
al., 2019; Tang et al., 2019), learning goals (Heras et al., 2020; Huang et al., 2019), learning 
styles (Heras et al., 2020; Klašnja-Milićević et al., 2011) , student profiles (Shanshan et al., 
2021) and so on. Unlike consuming entertaining products such as movies or music, reading 
learning materials or solving quizzes requires higher levels of motivation and cognitive 
investment of users. Providing explanations of the recommendations to the students is 
considered as a solution. Some promising results of the explanations’ effects have been 
found: increasing the students' attention towards recommended practices, the willingness to 
open them (Barria-Pineda et al., 2021); increasing the students' trust in hints, perceived 
usefulness of them, and the intention to use them again (Conati et al., 2021); increasing the 
students' perceived unexpectedness, novelty of recommended courses, and the interests in 
them (Yu et al., 2021); increasing the students' usage of the recommended quizzes (Dai, 
Takami, et al., 2022; Takami et al., 2022). 

Unlike traditional machine learning models such as decision tree and logistic 
regression, recent models involving neural networks are becoming more and more difficult to 
understand (Khosravi et al., 2022). It is commonly considered that more complex models 
have better performance in terms of predicting user’s behavior (Molnar et al., 2022; Rudin, 
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2019). To achieve model transparency, explaining complex models becomes a research 
field also known as “eXplainable Artificial Intelligence (XAI)” (Arrieta et al., 2020). However, 
there remain two open issues before suggesting researchers and practitioners to develop 
more complex models and then struggle to explain it: 
1. It is doubted that there is a trade-off between the model’s accuracy and complexity 

(Molnar et al., 2022; Rudin, 2019). As Gervet et al. (2020) observed in their 
experiments, the superiority of deep knowledge tracing models over logistic regression 
models is influenced by the size and shape of the dataset.  

2. Should we develop an explainable model in the first place and then improve the 
accuracy or develop a complex model and try to explain it afterwards (Molnar et al., 
2022)? 
To address these issues, we focus on a specific educational context of recommending 

math quizzes in this study. Previously, we proposed a simple and explainable recommender 
system named Naïve Concept Explicit (Naïve CE) model, which recommends quizzes based 
on the estimation of the students' mastery level on math concepts (Dai, Flanagan, et al., 
2022). The model also provides explanations of why the students should undertake the quiz 
from the perspective of math concepts. We also conducted a real-life experiment where the 
concept-based explanations showed positive effects in motivating students to attempt the 
quizzes (Dai, Takami, et al., 2022). In this study, we are interested in knowing whether the 
explainable Naïve CE has a good prediction accuracy compared with a powerful but less 
explainable model--- Matrix Factorization (MF). We also proposed a combined model 
CE+MF to preserve the explainability of Naïve CE and predicting power of MF. We used a 
long-term quiz answering dataset in our learning management system to evaluate the 
models’ accuracy as to predicting students’ correctness rate of the quizzes. The results 
revealed that 1) The explainable model Naïve CE had a lower accuracy than the less model 
MF given the sparse dataset; 2) Combining two models achieved a moderate accuracy in 
predicting students’ answers while preserving the explainability of Naïve CE. Our study 
served as an example of how to develop an inherently explainable educational 
recommender system and how to improve the accuracy by integrating more complex 
models. 

 
2. Related Work 
 
2.1 Explainability of Recommender Systems 
 
Basically, there are two approaches to generate explanations in recommender systems--- 
model-intrinsic and post-hoc (Zhang & Chen, 2020). In the model-intrinsic approach, the 
explanation explains exactly how the model generates a recommendation. In educational 
contexts, an example of model-intrinsic explanation can be to explain how the student’s 
knowledge state is estimated and why a learning item is considered preferable to improve 
his/her knowledge state (Dai, Flanagan, et al., 2022). Other model-intrinsic explanations 
include rule-based (Conati et al., 2021), keyword-based (Yu et al., 2021), concept-based 
(Dai, Flanagan, et al., 2022; Rahdari et al., 2020), and parameter-based (Takami et al., 
2022) explanations. In contrast, the post-hoc approach allows the recommending 
mechanism to be a “black box” and generates the explanations afterwards. In educational 
contexts, a post-hoc explanation for a recommended item can be something not necessarily 
related to the knowledge state estimation but instrumental in motivating the student to accept 
the recommendation. For instance, an explanation showing how many students have 
attempted this item may work for students who are weak to peer pressure (Takami et al., 
2023). Feature-based explanations were adopted for “black-box” models but Swamy et al. 
(2022) found that the explainers are not consistent on feature importance. “Black box” or 
“Deep” methods are commonly considered more powerful in predicting users’ behavior 
(Molnar et al., 2022; Rudin, 2019). However, this remains doubtful as Gervet et al. (2020) 
found that deep knowledge tracing models worked better with larger datasets while logistic 
regression models worked better with denser datasets. There is a concern of over-using 
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complex models while an explainable model which has a comparable accuracy is available 
(Khosravi et al., 2022; Molnar et al., 2022).  

In the context of learning math, we consider that developing an explainable 
recommender system in the first place is intuitive and straightforward. We proposed a simple 
and explainable recommender system named Naïve Concept Explicit (Naïve CE) model, 
which recommends quizzes based on the estimation of the students' mastery level on math 
concepts (Dai, Flanagan, et al., 2022). We also conducted a real-life experiment where the 
concept-based explanations showed positive effects in motivating students to attempt the 
quizzes (Dai, Takami, et al., 2022). In this study, we aim to investigate the predicting 
accuracy of Naïve CE compared with other classic recommendation models. We also 
attempt to improve the accuracy of Naïve CE by combining it with more complex models 
while preserving the explainability. This study serves as an example of developing inherently 
explainable recommender system as suggested by Molnar et al. (2022). 
 
2.2 Naïve CE and MF for Recommending Math Quizzes 
 
As Birenbaum et al. (1993) suggested, identifying specific misconcepts and difficult areas is 
more instructive than a test score for remediation in learning Algebra. Therefore, it is 
important to recommend math quizzes that address the students' weak points which are 
readable math concepts. This motived us to propose a concept-explicit recommender 
system named Naïve CE (Dai, Flanagan, et al., 2022). Naïve CE assumes that solving a 
quiz requires the knowledge of related math concepts in the quiz. We utilized the student-
quiz interactions and quiz-concept associations to estimate students’ mastery levels of the 
concepts and the possibilities for them to answer the quizzes correctly. We then 
recommended the quizzes based on the possibilities and the expected learning gains in 
terms of the mastery level updates of the concepts. Naïve CE is inherently explainable as 
every step of the estimation is a shallow calculation which is understandable for human 
beings.  

However, we also have a concern on the estimation performance of Naïve CE. In other 
words, how well can Naïve CE estimate students' mastery level and their probabilities to 
correctly answer the quizzes? Is there an inferiority in estimation performance compared 
with more accurate but less explainable models? As Barnes (2005) pointed out, it is 
debatable whether an explicit model with expert-assigned concepts models student 
performance better than an implicit model with latent factors. Therefore, we selected a 
classic recommendation model matrix factorization with latent factors as a comparative 
target of Naïve CE. 

Matrix factorization (MF) (Koren et al., 2009; Takács et al., 2008) is a frequently used 
model to recommend items that users may have interests. This model assumes a user's 
interest towards an item comes from her/his preferences on some factors and the 
relatedness of the factors with the item. It then guesses the unseen user-item interactions by 
learning from observed user-item interactions. Khosravi et al. (2017) applied MF in their 
model to estimate students' knowledge gaps to answering the quizzes. To integrate the 
strengths of both models, Abdi et al. (2018) fed the error in Bayesian knowledge tracing 
model to an MF model, improving the accuracy of estimating student performance. Since MF 
has been verified as a useful model to estimate student performance and shares some 
similarities in modeling the problem with Naïve CE, we chose MF as a comparative model in 
discussing the estimation performance and model explainability. We also propose a method 
to combine two models so that the readability of concepts in Naïve CE is preserved. 
 
3. Math Recommender Models 
 
3.1 Problem Definition 
 
In learning management systems, the learning activity can be modeled as a sequence of 
students' reactions towards learning materials. The task is to recommend learning materials 
that fit to an individual student's learning progress. It is common that the observed student 
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reactions are limited to a small set of the learning materials. As a result, predicting the 
student reactions on unseen learning materials is a key step. For the specific context of 
solving math quizzes, we formalize the problem as follows: Given a set of  students, a set 
of  math quizzes, and the student correctness rates on the quizzes , we want to 
estimate the student correctness rates on unseen quizzes . 
 
3.2 Naive Concept-Explicit Model (Naïve CE) 
 
Suppose that we have a quiz “Let the set of all positive divisors of 12 be A. Fill in the  with 

 or . (1) 2 A (2) 7 A (3) 12 A”. Solving the math quiz requires the knowledge of “set” 
and “positive divisor”. The probability that a student can successfully solve a math quiz 
depends on how s/he understands the required concepts. Motivated by this intuition, we 
proposed Naïve  CE (Dai, Flanagan, et al., 2022) and we review the mechanism of the 
model as shown in Figure 1:  
STEP 1 When given the observed student-quiz matrix whose entries indicate the 
correctness rates and the quiz-concept matrix whose entries indicate the relatedness of a 
concept and a quiz, we calculate the students' mastery level on each concept by looking at 
how they successfully solved quizzes related to the concept. Note that the quiz-concept 
correspondence is extracted from the quiz information automatically, which is also readable 
concepts to students. 
STEP 2 We then estimate the probability of a student successfully solving a quiz by 
considering how much of the required concepts has been mastered.  

By doing this, the probabilities are modified by the inter-relationships between quizzes 
and concepts. For instance,  successfully solved  in the history but got an estimated 
success of . This is because  requires the knowledge of  and the student failed to 
solve  which also requires the knowledge of . However, this model falls short in coping 
with unseen concepts. For instance,  had not attempted any quizzes related to . As a 
result,  is ignored in STEP 2. 

 

 
Figure 1. The mechanism of Naïve CE model. 

 
3.3 Matrix Factorization (MF) 
 
MF decomposes the observed user-item interaction matrix  into two matrices 

 and  such that , where  is the number of latent factors. By minimizing 
the difference between the estimated and the observed interactions (also viewed as a 
machine learning process), we get full  and , which help us estimate the unseen 
interactions. The magic part of this model is that it supposes a user's interest on an item 
comes from the synergistic effect of the user's preferences on the latent factors and the 
importance of the factors to the item. This idea is somehow similar to Naïve CE except that 
the factors are “latent” and difficult to interpret. There is a variant of MF which considers user 
bias and item bias. As a user may tend to highly rate all items or an item of low quality tends 
to be rated low by all users, introducing bias parameters in MF helps model this situation. By 
doing this, the sum of  and bias better approximates the observed interactions but the 
intermediate value of  is harder to interpret. 
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3.4 Concept-Explicit Matrix Factorization (CE+MF) 
 

 
Figure 2. The mechanism of CE+MF. 

 
In Section 3.2, we discussed that Naïve CE is easy to interpret since the concepts are 
predefined and the computation is simple and straightforward. However, it simply gives up 
guessing when encountering unseen concepts and quizzes. In Section 3.3, we described 
that MF is good at estimating the probable values for unseen interactions by iteratively 
learning from the observed interactions. However, the latent factors of the consisting 
matrices are difficult to interpret. To take the strengths of both models, we propose a simple 
hybrid model called CE+MF. As illustrated in Figure 2, Naïve CE utilized the observed 
student-quiz matrix and quiz-concept matrix to estimate student-concept matrix. The 
student-concept matrix is again used to adjust the student-quiz matrix. MF simply 
decomposes the observed student-quiz matrix into two matrices with latent factors. In 
CE+MF, we first estimate the student-concept matrix as we do in STEP 1 in Naïve CE 
model. Then, we adopt MF model to update the student-concept matrix where the mastery 
level on unseen concepts is modified. Last, we update the student-quiz matrix with the 
updated student-concept matrix as we do in STEP 2 in Naïve CE model. As a result, CE+MF 
model is supposed to have a higher predictive performance than Naïve CE model while 
preserving the explainability on concepts. 
 
4. Evaluation 
 
In this study, we aim at investigating two aspects of the recommender models--- quiz 
mastery estimation performance and explainability. For the quiz mastery level estimation 
performance, we use a historical dataset collected in a learning system to evaluate whether 
the models can correctly predict students’ answers for unseen quizzes. For explainability, we 
evaluate whether each step in the model can be explained and what user-friendly 
explanations can be provided. 
 
4.1 Quiz Mastery Level Estimation Performance 
 
4.1.1 Dataset 
 
We collected quiz answering data from our learning system  (Flanagan et al., 2021) 
generated by the first-year students of a Japanese high school from April 2021 to March 
2022. During this period, the students attempted the math quizzes in different contexts such 
as finishing the assignments, preparing an upcoming test, and self-oriented practicing. As 
they attempted a quiz, they were required to check the answer and report whether they 
solved the quiz successfully. Each attempt was recorded as a 0-1 score associated with the 
student id, quiz id, and timestamp. We computed the aggregated student-quiz correctness 
rate by taking the average score of all attempts throughout the period. We did not conduct 
any data filtering process as the temporal order of attempts and the number of attempts are 
not essential in this evaluation framework. Finally, we obtained a dataset consisting of 
27,431 attempts for 270 unique students and 1,919 unique quizzes. Table 1 shows the 
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statistics of the number of attempts per student and per quiz. After converting the log data 
into the student-quiz correctness matrix, only 23,155 pairs of students and quizzes were 
observed, which indicates a very high sparsity of 95.53% ( ). 
 
Table 1. Statistics of the Dataset for Quiz Mastery Level Estimation Evaluation 

 # attempts per student # attempts per quiz 
mean 101.596 14.294 
std 97.681 31.404 
min 1 1 
max 808 426 

 
4.1.2 Metrics 
 
Our main concern is to evaluate whether a model can predict a student's success probability 
on a quiz. Therefore, we adopt two metrics to measure the agreement between the 
estimated probability and true correctness rates: Area under ROC curve (AUC) is 
considered an effective metric to measure how well a model separate negative and positive 
samples across different decision threshold choices (Bradley, 1997). Since the true 
correctness rates for student-quiz pairs are real numbers between 0 to 1, we first transform 
the true correctness rates into 1 if it is greater than 0.5, 0 otherwise when applying AUC. 
Root mean square error (RMSE) is used to measure the absolute differences between the 
estimated probability and the true correctness rates.  
 
4.1.3 Implementation 
 

 
Figure 3. The data splitting process. 

 
As illustrated in the upper part of Figure 3, we set aside 20% of the student-quiz attempts as 
test data and all models were blind to these data during training or tuning process. For 
models involving hyper-parameter tuning, we adopted a 5-fold cross validation approach to 
select the best combination of parameters. As illustrated in the lower part of Figure 3, in 
each fold, 20% of the data is used to validate the model performance and the average 
performance of all the folds is treated as the final performance of a combination of 
parameters. We adopted a grid-search approach to generate the combinations of 
parameters. Only the performance of the best combination of parameters will be reported in 
the following section. 

The followings are some implementation details of the models: 1) Naïve CE. As 
described in (Dai, Flanagan, et al., 2022), we adopted text mining techniques to 
automatically extract math concepts from the quizzes. The entries of quiz-concept matrix 
were computed using TFIDF (Salton & Buckley, 1988) weighting scheme. 2) MF. We 
adopted stochastic gradient descent algorithm to obtain the matrices  and  whose product 
has the minimum difference with the observed student-quiz correctness rate. We tuned three 
parameters--- learning rate , regularization factor  and number of latent factors  for MF. 
MF_bias and CE+MF_bias are variants with bias parameters of MF and CE+MF, 
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respectively. The best combination of hyperparameters is  and is 
used in all MF-related models. The code for MF-related parts was adapted from (Yeung, 
2020). 
 
4.1.4 Results 
 
Table 2. Quiz Mastery Level Estimation Evaluation Results 

 AUC RMSE 
Naïve CE 0.639 0.508 
CE+MF 0.688 0.478 
CE+MF_bias 0.692 0.464 
MF 0.772 0.419 
MF_bias 0.799 0.381 

 
Table 2 shows the AUC and RMSE values for each model. Overall, Naïve CE has the 
lowest, MF has the highest, and CE+MF has the medium performance in both metrics. MF 
with bias has a better performance both in separate and hybrid models. This result is 
consistent with our expectation: 

 Naïve CE is straightforward but ignores the unseen concepts or quizzes. From the 
perspective of AUC, this model can discriminate a correct or incorrect answer. However, 
the performance is nearly a random model from the perspective of RMSE, which means 
the detailed values of the correctness has a large gap with student's true mastery level. 

 MF and MF_bias do a good job at approximating the observed student-quiz correctness 
rates and therefore the latent factors help to predict the values for unseen pairs. With 
the AUC value being close to 0.8, MF_bias is supposed to be practically useful to 
separate a correct or incorrect answer (Mandrekar, 2010). Meanwhile, the RMSE value 
is still high if we consider a situation where we mistake a student's correctness rate 0.98 
into 0.6. However, whether the students can recognize the difference and how they 
perceive the estimation needs to be further investigated and discussed. 

 The hybrid model CE+MF achieves better performance than Naïve CE but still has a 
distance to the one of MF. We consider a possible reason is the flaws in quiz-concept 
matrix. First, not all necessary knowledge and skills for solving a math quiz can be 
detected from the textual information of the quiz. Second, the relatedness of the 
concepts to a quiz may not be correct just judging from their occurrences in the quiz. 
Ingesting more elaborated domain models to Naïve CE and observe the performance 
improvement is one of the future directions. 

 
4.2 Explainability 
 
We compare the explainability of different models as shown in Table 3: 

 At the lowest level, all the models can provide information about the estimated student-
quiz correctness rate, which can be used to indicate the difficulty of the quiz when 
recommending the quiz. 

 At the medium level, we try to further explain why the correctness rate is as it is. Naïve 
CE, CE+MF, and CE+MF_bias can provide information about the students’ mastery 
level of concepts, which is the rationale behind the student-quiz correctness rate 
estimation. However, MF suffers from provide human-readable information about how 
the student-quiz correctness rate was estimated as the factors are latent. Fortunately, 
we can leverage the user bias and item bias in MF_bias to provide some extra 
information. Specifically, we treat the user bias as the student's general ability to solve 
math quizzes and the item bias as the quiz's general difficulty to all students. Note that it 
is potential to improve the accuracy of Naïve CE by introducing quiz bias or student 
bias, which will be future work. 

 At the highest level, we want to explain why the concept master level or quiz general 
difficulty is estimated. In Naïve CE, the concept mastery level is explainable as the quiz-
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concept associations is readable to human. In contrast, CE+MF or CE+MF_bias 
involves a matrix factorization process in estimating the concept mastery level, which is 
difficult to explain. 

 
Table 3. Explainability and Explanations of Recommender Models. 

Explainability Model Argument User-Friendly Explanation 
Low  Naïve CE 

MF 
MF_bias 
CE+MF 
CE+MF_bias 

student-quiz 
correctness 
rate 

The estimated difficulty of this quiz for 
you is 70%. 

Medium Naïve CE 
CE+MF 
CE+MF_bias 

concept 
mastery 
level 

Your mastery level of these concepts 
can be improved by solving this 
quiz: multiple, integer, proof 

MF_bias quiz general 
difficulty 

This quiz is difficult (84%) for most of 
your classmates. Let’s have a try! 

MF_bias student general 
ability 

Your ability (23.4%) to solve quizzes is 
lower than the average (56.9%) of 
your classmates. 

High Naïve CE quiz-concept 
associations 

Integer is important in solving q1(50%), 
q2 (30%), and q3 (20%). Since you 
have mistaken q1 twice, you are 
suggested to address this problem 
first. 

 
To summarize, Naïve CE is explainable until the highest level as every step in the 

model is a shallow computation from observed data. MF is only explainable at the lowest 
level as the latent factors are difficult to interpret. However, the variant MF_bias possesses 
some additional information about the general information of the quiz difficulty and student 
ability. This shows a direction to improve the accuracy of Naïve CE by introducing quiz 
difficulty and student ability parameters. CE+MF is explainable at the medium level as the 
whole framework is identical to Naïve CE, but a local step involves a MF process. 

 
5. Discussion 
 

As the results in Section 4.1 show, MF has the highest performance of estimating quiz 
mastery level while Naïve CE has the lowest, CE+MF has the medium performance. The 
results in Section 4.2 show that we can preserve part of the explainability of an inherently 
explainable model Naïve CE by combining it with a difficult-to-explain model MF. Given the 
fact that the quiz answering data set is sparse and the quizzes only have 14 answers on 
average, we did observe a trade-off between the accuracy and the explainability of different 
recommender models. As was explored in Gervet et al.’s work (2020), models’ performance 
varies to the type and characteristics of the dataset and features. We think it is important to 
select a proper recommendation model based on the learning context and data available. 
Besides, we want to clarify that the explainability of the model is not necessarily equal to the 
explainability to the students in the practical world. For instance, it would be sufficiently 
explainable if the students are satisfied with the quiz general difficulty without the interest to 
understand how it is computed. In this case, MF_bias is not easy to explain in the sense that 
every step is understandable to humans but explainable to end users. 

 
6. Conclusions and Future Work 
 
In this study, we focused on exploring the accuracy and the explainability of math 
recommender systems. We took a simple and explainable recommender model Naïve CE as 
an example and compared its performance with a more complex but difficult-to-explain 
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model MF. We also attempted to combine two models so that the strengths of both models 
are integrated. Using a student quiz answering dataset, we found that the explainable model 
Naïve CE had a lower accuracy than the complex model MF, and the combined model 
CE+MF had a moderate accuracy. Our results also showed that it is possible to improve the 
accuracy of an inherently explainable model and preserve the explainability by combining it 
with more complex models. 

Some directions of future work are: 1) Explore other models that can be integrated into 
the framework of Naïve CE and introduce other learning related parameters such as quiz 
difficulty and student ability; 2) Investigate how dataset influences the performance of the 
recommender models; 3) Ingesting more elaborated domain models into Naïve CE and 
explore the performance improvement; 4) Further explore the difference between the model 
explainability and the practical explainability to students. Students with different levels of 
motivations, information literacy, and curiosity may question the recommendations at 
different levels. It may be important to personalize the explanations according to different 
scenarios. 
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