
Shih, JL. et al. (Eds.) (2023). Proceedings of the 31st International Conference on Computers in
Education. Asia-Pacific Society for Computers in Education

ExGen: Ready-To-Use Exercise Generation
in Introductory Programming Courses

Nguyen Binh Duong TAa*, Hua Gia Phuc NGUYENa & Swapna GOTTIPATIa

aSchool of Computing and Information Systems, Singapore Management University
*donta@smu.edu.sg

Abstract: In introductory programming courses, students as novice programmers
would benefit from doing frequent practices set at a difficulty level and concept suitable
for their skills and knowledge. However, setting many good programming exercises for
individual learners is very time-consuming for instructors. In this work, we propose an
automated exercise generation system, named ExGen, which leverages recent
advances in pre-trained large language models (LLMs) to automatically create
customized and ready-to-use programming exercises for individual students on-
demand. The system integrates seamlessly with Visual Studio Code, a popular
development environment for computing students and software engineers. ExGen
effectively does the following: 1) maintaining a set of seed exercises in a personalized
database stored locally for each student; 2) constructing appropriate prompts from the
seed exercises to be sent to a cloud-based LLM deployment for generating candidate
exercises; and 3) implementing a novel combination of filtering checks to automatically
select only ready-to-use exercises for a student to work on. Extensive evaluation using
more than 600 Python exercises demonstrates the effectiveness of ExGen in
generating customized, ready-to-use programming exercises for new computing
students.

Keywords: introductory programming courses, exercise generation, large language
models, prompt engineering, auto-filtering.

1. Introduction

Despite recent advances in code generation using large language models (LLMs), e.g.,
OpenAI Codex, ChatGPT, Google LaMDA, etc., programming is still an essential skill that
computing students must master in the foreseeable future (Becker et al., 2023). It is well-
known that computer programming is a challenging subject for many new university students
(Keuning et al., 2018). To learn effectively, students must practice on their own frequently with
suitable exercises designed for their level of programming skills and knowledge. However, it
is usually impractical for instructors to manually create enough exercises for all students, let
alone creating customized or personalized exercises for each individual student on-demand,
i.e., when they need to practice. Exercises from Internet platforms for coding practices and
interview preparations (Joshi et al., 2023) such as LeetCode.com might not be ready-to-use
in introductory courses as they are not customized for the skill levels of new computing
students. From our experience, many easy-level LeetCode problems can be quite challenging
for novice programmers (Ta et al., 2022). Intermediate or harder problems found online often
require advanced data structures and algorithm concepts not taught in an introductory course.

Automatic generation of programming exercises has been an important problem in
technology-enabled education (Zavala and Mendoza, 2018). Recently, the application of pre-
trained LLMs in supporting exercise and feedback generation has been gaining attention.
Sarsa et al. (2022) explored OpenAI Codex for the purpose of creating new Python exercises
and code explanations. They provided a comprehensive, mostly manual evaluation of the
output generated by Codex. They showed that a large percentage of the generated exercises
were sensible and new, but most of them were not directly usable by students. However, they
did not address the problem of on-demand generation of ready-to-use exercises customized

104

for various levels of difficulty. Recently, Kazemitabaar et al. (2023), Becker et al. (2023) and
Finnie-Ansley et al. (2023) discussed and evaluated the use of LLMs to generate sample
solutions and to provide adaptive feedback on code submitted by students, but not exercise
generation.

In this work, we propose ExGen, a software tool for automatically generating new,
ready-to-use exercises for individual students learning introductory programming in Python.
ExGen makes use of LLMs which have been pre-trained on a massive amount of text and
code such as OpenAI's GPT-3.5-Turbo. In ExGen, we implement carefully designed LLM
prompting strategies, automatic filtering of exercises, and seamless integration with Visual
Studio (VS) Code. ExGen makes it convenient for students to work on new exercises that are
customized for their skill levels. An innovative component of ExGen is that it makes use of
LLMs not just to generate new exercises, but also to automatically check if the newly
generated exercises are ready-to-use or not. In this way, ExGen is different from existing
research that investigated exercise generation based on pre-defined templates (Zavala and
Mendoza, 2018). We make the following contributions in this paper:

 We considered the problem of auto-generating ready-to-use exercises customized for a
certain difficulty level and programming concepts, e.g., string, lists, etc., upon requests
from individual students.

 We designed zero-shot and few-shot prompting strategies to obtain appropriate
responses from pre-trained LLMs. We then proposed a mechanism of chaining different
filtering checks which auto-select ready-to-use exercises instead of requiring human
experts to inspect the LLM output and make decisions. The checks are based on popular
software engineering techniques such as unit testing combined with LLM-based checking
techniques.

 We implemented a fully functional VS Code extension which makes it more convenient
for students to generate new exercises and practice coding. We noted that using existing
web interfaces such as ChatGPT or OpenAI's Playground requires a lot of copy/paste
actions for adjusting prompts and submitting requests.

 We conducted an extensive evaluation of ExGen using more than 600 programming
exercises generated via the GPT-3.5-Turbo API. Each of these exercises was manually
inspected to see if they are ready-to-use; and compared to ExGen's output. The result
demonstrated the effectiveness of ExGen and the proposed solution design.

2. Problem Statement

We are interested in auto-generating ready-to-use exercises, i.e., those that a student can
work on right away without further modifications by human experts. To be considered ready-
to-use, a generated exercise would need to have: 1) a clear problem statement, 2) working
solutions and test cases, and 3) an appropriate difficulty level as requested by the student.
This is a challenging problem, as Sarsa et al. (2022) found that most generated exercises
were not ready-to-use when using OpenAI Codex which is based on the GPT-3 model.

On top of generating clear, well-defined problem statements, producing exercises with
the right level of difficulty is of crucial importance to students learning programming. For
instance, beginners would be encouraged by easy exercises covering the concepts taught in
class as they are just getting started. On the other hand, above average students would like
to be challenged with harder problems which require a certain level of higher order thinking.
Many programming problems available on Internet platforms (Joshi et al., 2023) are not
appropriate for students in our course due to them: 1) being very difficult, and/or 2) requiring
advanced concepts such as dynamic programming, tree-based data structures, etc., which
are not covered in an introductory course for first-year students.

In this work, we define three levels of difficulty for exercises which have been used in
our introductory programming course at Singapore Management University. The three levels
of difficulty, namely "easy", "intermediate", and "hard", are defined relative to each other.
These levels can cater to a cohort of students with wide-ranging levels of skills and abilities.
As the course is more about basic programming and computational thinking skills, and less
about using Python, some basic exercises can be made harder by disallowing certain Python

105

utilities such as sorting functions. We can also impose some constraints on the number of
loops due to efficiency reasons, and as a result, the difficulty is increased. In the following
three examples, we explain the difficulty levels for each exercise which has been used in our
course. The solutions are not included here due to space constraints.

Example 1: "Prompt the user for a message. Display the message character by character on
the same line but separate every two adjacent characters by a space". This is an "easy"
exercise which tests basic string manipulation skills using a "for" loop in Python. Most students,
including those who are new to programming, after being taught the concepts, can handle this
exercise without issues. We have been observing that a few might need help with printing out
all the characters on the same line. Note that the "easy" exercises are more than just trivial
programming tasks such as creating a list, adding two numbers, etc.

Example 2: an "intermediate" exercise
for string manipulation. The number of
lines of code as well as the logic for a
possible solution to this exercise is
more complicated than that of Exercise
1. The student would have to figure out
the exact range for a loop from m to n,
followed by a few complex conditional
statements to get the correct output.
Therefore, in the context of this paper,
Exercise 2 is more difficult than
Exercise 1.

Example 3: a "hard" exercise, also for
string manipulation. This exercise is not
as straightforward as Exercise 1 or 2,
as it requires the student to keep track
of the starting and ending point of each potential subsequence of letters using a Boolean
variable, and the indices in the input. There is also the additional requirement of using a single
"for" loop, which makes the exercise more challenging.

We note that it is not practical to manually create a lot of such ready-to-use exercises
on-demand, i.e., when students need them, that are personalized to individual skill levels and
learning concepts, as many students might be working concurrently on different kinds of
problems at various difficulty levels. In the below section, we describe our approach to
realizing automatic generation of ready-to-use exercises.

3. ExGen: Design and Implementation

Figure 1. Design and Implementation of ExGen

Figure 1 shows the interactions between students, instructors and ExGen in our programming
course. As ExGen aims to minimize instructor’s involvement, the only role of the instructor is
to provide a limited number of sample (seed) exercises with three difficulty levels: “easy”,
“intermediate”, and “hard”. Each student in the course can download these exercises into a
personalized database which is saved locally. Students can load any exercises from their own

Example 3: Define a function get_longest_subsq(st)
for returning the longest subsequence from st that
consists of only the letters from the English
alphabet. If there are multiple subsequences of
the same longest length, the function returns the
first one. If st doesn’t contain any letter, '' is
returned. Implement this function using just one
for loop. For instance: get_longest_subsq
('ab24[AaBbCDExy0longest$]') returns 'AaBbCDExy',
and get_longest_subsq('12345 ') returns ''.

Example 2: Define a function called dis_nums(m:
int, n: int), m <=n. The function displays all
int numbers between m and n (both inclusive)
separated by spaces. Special cases: if the number
is a multiple of 3 but not a multiple of 5,
display '-' instead. If the number is a multiple
of 5 but not a multiple of 3, display '*'
instead; 3) if the number is a multiple of both 3
and 5, display '#' instead. For instance,
dis_nums(4, 16) shows: 4 * - 7 8 - * 11 – 13 14 #

106

database, work on them, and use ExGen to generate more exercises to practice. Students
can choose to save new exercises into their personalized database for reference later.

ExGen provides functionalities for managing a personalized database of exercises for
each student, generating new exercises via pre-trained LLMs, and providing a suite of auto-
filtering checks to give students ready-to-use exercises at a difficulty level suitable for their
knowledge and programming skills. In the below, we provide a brief description of each ExGen
component as shown in Figure 1, and relevant implementation details.

3.1 Prompt management and LLM integration

ExGen generates new exercises by first constructing a "prompt" as a query to be sent to a
pre-trained LLM such as OpenAI GPT-3.5-Turbo. It obtains a list of candidate exercises for
further filtering before presenting a few selected ones in an IDE, e.g., VS Code, for the student
to work on. Constructing good prompts for LLMs in many application domains, i.e., "prompt
engineering", is currently an active area of research (Liu et al., 2023). LLM prompts may
consist of questions, instructions, examples, etc., so that the model would reply with an output
which has some desired qualities and/or quantities. In "zero-shot" prompting, we can query
the model without providing any example of expected results. On the other hand, "few-shot"
prompts provide several actual examples to the model.

In the GPT-3.5-Turbo model, which is used in ExGen's implementation, input prompts
can be given as a series of messages with different parameters. Each message is an object
with a role, which is either "system", "user", or "assistant", together with the content of the
message. Usually, the first message would be a "system" message which helps define the
behavior of the AI assistant. We can then alternate between "user" and "assistant" messages,
in which "user" messages provide specific instructions for the AI assistant, and "assistant"
messages can be used to provide examples of desired outputs, i.e., the "shots" in few-shot
prompting. All messages must be constructed and passed to the LLM in a single API call, so
that the model would have the right context when generating the new exercises. Note that
OpenAI's web APIs do not have the memory of past requests. In this work, we consider two
different strategies of prompting for exercise generation using GPT-3.5-Turbo, namely:

 Zero-shot Prompting (referred to as "zero-shot"): provides keywords on the

programming concepts and difficulty levels required by a student, without using any
examples of exercises. The prompt starts with a system message, e.g., "You are a helpful
teaching assistant for undergraduates who are learning introductory programming in
Python", and then adds a user message, e.g., "Give me three easy Python string
exercises with this keyword: house".

Figure 2. Messages for Few-shot Prompting

 Few-shot Prompting (referred to as "few-shot"): provides a few actual examples on how

the desired output should look like. In essence, when requested by students, ExGen
constructs a series of messages following the GPT-3.5-Turbo model as shown Figure 2.
ExGen first inspects the current exercise that the student is working on. Second, it
searches for other exercises on the same concept, e.g., string, list, etc. and having a
similar level of difficulty in the student's database. ExGen then sequentially appends the
relevant examples, each with a problem statement, solution, and test cases, with the

Message 1: {"role": "system", "content": "You are a helpful teaching assistant for
undergraduates who are learning introductory programming in Python."}
Message 2: {"role": "user", "content": "Give me a hard Python string exercise."}
Message 3: {"role": "assistant", "content": "Here is one hard Python string exercise:
{example of a relevant exercise from the database}"}
Message 4: {"role": "user", "content": "Good. I want one more hard Python string
exercise. Print the result with the same format as the previous ones."}
... (more messages for remaining examples)
Last message: {"role": "user", "content": "Good. I want {N} more hard Python string
exercises using this keyword: {keyword}. Print the result with the same format as the
previous ones."}

107

appropriate roles into the list of messages. The result will be like a conversation in which
the LLM plays the role of a teaching assistant guided via a multi-turn conversation with
several concrete examples. The last message is a user message requesting the LLM to
generate N new exercises. Students can also specify some new keywords, e.g., "person",
"movies", etc., so that the generated exercises would have more variations. Note that we
can specify the difficulty levels, e.g., "easy", "hard", etc., and concepts, e.g., "string", "list",
etc. in the "few-shot" prompt messages from Message 2 onwards in Figure 2.

In the implementation of "few-shot", ExGen uses three examples (3-shot) with the default
parameters of the GPT-3.5-Turbo model. We deploy our own cloud instance for running LLM
inferences using Azure OpenAI Service for better control and billing purposes. We also note
that previous work in exercise generation, e.g., (Sarsa et al., 2022), mostly made use of the
OpenAI Codex API, which has been deprecated since Mar 2023. The output of this stage is N
candidate exercises, each having: 1) a problem statement, 2) a solution, and 3) test cases.
ExGen will conduct auto-filtering for these exercises in the next stage.

3.2 Auto-filtering of generated exercises

In ExGen, we implement several methods to filter exercises generated by LLMs. The methods
are chained, i.e., a newly generated exercise must successfully clear the previous filter before
it is checked by the next filter, as shown in Figure 3. We consider standard software
engineering techniques as well as LLM-based approaches for filtering. First, ExGen will check
if the Python solution code can be compiled to bytecode without any errors. Then it will run all
the unit test cases which are generated by the LLM together with every new exercise.

Figure 3. Chain of Filters in ExGen

After a new exercise can pass the first two filters, ExGen will do an additional check
regarding the difficulty level of the exercise. The rationale for implementing this final check is
that LLMs such as GPT-3.5-Turbo are probabilistic models, and their answers might be
different from one interaction to the next. Therefore, it could be beneficial to ask an LLM to
verify its own answers generated previously.

Figure 4. Example Messages for Difficulty Classification

For the difficulty check, ExGen will perform a classification task by first constructing an
appropriate prompt as shown in Figure 4, and then asking the LLM to classify the generated
exercise in terms of difficulty levels. The prompt has two examples for each level of difficulty
in a series of user and assistant messages. For the last user message, we ask the LLM to
provide a classification for a new candidate exercise based on the provided examples. If the
difficulty of the new exercise matches the required difficulty level, it will be shown to the student
as a ready-to-use exercise using ExGen's VS Code extension. In addition, we observed that
GPT-3.5-Turbo can generate exercises covering the concepts specified in the prompt such as
lists, strings, etc. most of the time, so ExGen does not need to check if a requested
programming concept is included in the output.

g y g y

Message 1: {"role": "system", "content": "You are a classification model that will
classify the difficulty of Python exercises."}
Message 2: {"role": "user", "content": "I want to you classify this exercise: {example
exercise}"}
Message 3: {"role": "assistant", "content": "Difficulty: " {example’s difficulty level}}
... (more messages for remaining examples)
Last message: {"role": "user", "content": "I want you to classify this exercise:
{candidate exercise}"}

108

3.3 Coding interface and database management

ExGen provides a convenient interface for students to work and generate exercises right in
VS Code. We have used ChatGPT as well as OpenAI's Chat Playground extensively, and we
observed that it takes a lot of time and effort to copy/paste prompts and exercises for
generation tasks. A screenshot of ExGen's interface is shown in Figure 5. Students can click
on "+ More exercise" at the right bottom of the IDE to generate new ready-to-use exercises.
They also have the option to change the problem statement, solutions or test cases used as
examples in the prompt before clicking "Submit". ExGen will automatically connect to an LLM
deployment, generate, and filter
the exercises.

Students can also save
selected ready-to-use exercises
into his/her own personalized
database. To make it easy for
students, we use the TinyDB
package, which is a portable
Python document-oriented
database, instead of setting up
a fully functional SQL database
engine like MySQL. The
database comes bundled in
ExGen so students can just use
it right away without further
setup or installation.

4. Evaluation

In this section, we aim to answer the following research questions (RQs):
RQ1: Which is the best prompting strategy for generating ready-to-use exercises?
RQ2: How effective is the auto-filtering approach implemented in ExGen?
RQ3: How much time does it take to generate a ready-to-use exercise?

4.1 Dataset and performance measures

We used a seed set that has 49 manually crafted Python exercises including all levels of
difficulty and introductory programming concepts such as string, list, dictionary, tuple, etc.
There were 18 "easy", 17 "intermediate", and 14 "hard" exercises in the seed set. We then
generated a total of 613 exercises (205 "easy", 270 "intermediate", and 138 "hard") using
ExGen via the API of GPT-3.5-Turbo LLM. We then manually inspected each of these
exercises to determine if they are ready-to-use. A ready-to-use exercise must satisfy the
following criteria used in the manual inspection: 1) a clear problem definition, 2) a correct
solution and test cases, and 3) a correct difficulty level as requested in the prompt.

We then measured the performance, i.e., accuracy, of each prompting strategy and
filtering check when compared to the manual inspection results. For example, when "few-shot"
prompting produces 5 ready-to-use out of 10 generated exercises, the performance of "few-
shot" is calculated as 50%. On the other hand, the performance of a filtering check is
calculated by how often it agrees with the manual inspection result. For example, the
performance of the unit testing check is calculated as 70% if it provides the same result, i.e.,
ready-to-use or not, as the manual inspection for 7 out of 10 generated exercises. We
measured the individual performance of each filtering check, as well as the overall filtering
performance.

Figure 5. ExGen's VS Code Interface

109

4.2 Results and discussion

RQ1-Comparing different prompting strategies: Figure 6(a) shows the percentages of
ready-to-use exercises for the two prompting strategies and three difficulty levels. The "few-
shot" prompting performed much better than "zero-shot" prompting in all cases. This is
because "few-shot" incorporates examples to better guide the LLM in generating new
exercises with appropriate levels of difficulty. We observed from the collected data that the
"zero-shot" prompt usually produced many more trivial exercises, such as creating a list of
several numbers, printing out a message with certain parameters, etc. These are not even at
the "easy" level. This is understandable, as the "zero-shot" prompt does not have enough
information about how an easy or hard exercise would be like. As a result, about 57% of "easy"
exercises generated by "few-shot" prompting were ready-to-use, compared to just 31% of
them in "zero-shot" prompting.

From Figure 6(a), it is observed that generating ready-to-use "intermediate" and "hard"
exercises is quite challenging, even with recent advances in LLMs. In the experiments, only
around 10% and 25% of "intermediate" exercises generated by "zero-shot" and "few-shot"
prompting were considered ready-to-use, respectively. Similarly, we obtained only several
ready-to-use "hard" exercises using "few-shot".

 (a) ready-to-use exercises (%) (b) exercises with correct difficulty levels (%)

Figure 6. Comparing two Prompting Strategies

Figure 6(b) shows the percentages of generated exercises which have the correct
difficulty levels (but might not be ready-to-use). By providing more detailed information about
difficulty levels with examples in the prompt, "few-shot" produced more exercises with the
desired difficulty levels. Around 40% and 25% of exercises generated by "few-shot" could be
considered as "intermediate" and "hard", respectively. However, quite a number of these
exercises did not have clear problem statements, correct solutions and/or test cases, so they
were not considered ready-to-use. Nonetheless, we observed that it's possible to make some
small modifications so that many of these more challenging exercises would be ready-to-use.

Table 1. Performance of the Auto-Filtering Checks

zero-shot
(unit test)

zero-shot
(difficulty)

zero-shot
(chain)

few-shot
(unit test)

few-shot
(difficulty)

few-shot
(chain)

Easy 68.6% 37.1% 69.5% 83.8% 96% 83.8%
Intermediate 51.4% 79% 90.6% 55.3% 78.8% 90.2%
Hard 51.5% 90.9% 98.5% 54.2% 77.8% 97.2%

RQ2-Evaluating ExGen's auto-filtering approach: The standalone performance of the unit
testing and difficulty checks, as well as the overall filtering performance (chain of all checks)
are shown in Table 1 (higher percentage is better). From the experiments, we noted that the
solutions of most generated exercises could pass the compilation check so that its result is
not included in Table 1. The unit testing check when used alone could correctly identify if a

110

candidate exercise is ready-to-use or not in many cases, especially for "easy" exercises
generated with "few-shot" prompting (83.8% accuracy when compared to manual inspection's
result). However, unit testing became less effective as the only filter for harder exercises as
shown in Table 1. This is because although around 50-70% of candidates for harder exercises
had working solutions and test cases in our experiments, they were not at the right levels of
difficulty, i.e., "intermediate" or "hard".

Table 1 also shows the performance of the difficulty check when used alone as an
exercise filter. It is not very effective when filtering "easy" exercises generated by "zero-shot"
prompting as there could be many trivial exercises. The difficulty check performed better when
filtering "intermediate" and "hard" exercises, compared to the unit testing check.

We observed good performance for our auto-filtering approach when chaining all the
three filters, i.e., compilation followed by unit testing followed by difficulty check. The accuracy
of the chained filters improved significantly for all prompting strategies when filtering
"intermediate" and "hard" exercises. Overall, we noted that "few-shot" combined with the
chained filters produced the best performance. Using this combination, we are more confident
that ExGen can provide ready-to-use exercises for students to work on right away.

It was also noted that the LLM used in ExGen tends to provide partially correct
solutions and/or test cases when generating "intermediate" and "hard" exercises. Although
these candidate exercises did meet the difficulty requirement, they failed ExGen's chained
filters in the end. We believe that with a few manual modifications by human experts, they can
be ready-to-use by students.

RQ3-Exercise generation time: We measured the average time to produce a ready-to-use
exercise using the two prompting strategies combined with the chained filters for various
difficulty levels. We noted that the generation time was quite reasonable for "easy" exercises,
which was around 10 and 20 seconds per exercise with "few-shot" and "zero-shot" prompting,
respectively. An "intermediate" exercise required 53 seconds for "few-shot", and 90 seconds
for "zero-shot". Using a less effective prompt like "zero-shot" increased the average generation
time as there would be more candidate exercises which were not ready-to-use.

On the other hand, generating ready-to-use "hard" exercises could take too long to be
considered on-demand (about 8 minutes for "few-shot", and 14 minutes for "zero-shot"). This
was because many candidate exercises would have to be generated before ExGen could find
one that met the "hard" difficulty requirement and has correct solutions/test cases. To this end,
we believe that "hard" exercise generation should be best done in a hybrid way. That is, ExGen
can provide initial generation and filtering support for course instructors to quickly modify the
LLM's output and make it ready-to-use.

Discussion: From the careful evaluation using more than 600 auto-generated exercises, we
believe that ExGen can provide students with ready-to-use programming exercises
customized at the right difficulty levels. LLM prompting strategies having sufficient details such
as examples have been shown to generate more exercises that are ready-to-use. In most
cases, our auto-filtering approach with a chain of software engineering and LLM-based checks
could work well regardless of the prompting strategy used. However, it is noted that
automatically generating truly ready-to-use, "hard" exercises is still a problem in AI-enabled
education despite recent progress in LLM and AI development.

Threats to Validity: We note that there are several limitations which may affect the validity of
this study. First, the output from LLMs could be non-deterministic, which might impact the
quality of generated exercises. We have tried to take this into account by evaluating many
exercises. Second, manual evaluation of exercises by human experts could be subjective,
e.g., when assigning a difficulty level. For this, we have used the opinion of two different
programming experts on the set of generated exercises. Finally, as more advanced LLMs such
as GPT-4 API are still in limited availability, it is possible that the results obtained from these
models are different from what we have seen in this study. We plan to do further investigations
using exercises in Python and other programming languages once access to more powerful
LLMs becomes widely available.

111

5. Related Work

Much research has been done in automatic generation of formative feedback and reference
solutions to code produced by students (Keuning et al. 2018, Koutcheme 2022, Ta et al. 2022).
Such feedback and reference solutions could be generated by current pre-trained LLMs to
help novice programmers know how to proceed when facing coding issues. On the other hand,
not much has been done in generating ready-to-use programming exercises for students to
do more practices. Kurdi et al. (2020) conducted a systematic review of automatic exercise
generation in many different domains such as analytical reasoning, geometry, history, logic,
relational databases, programming, and science.

Zavala and Mendoza (2018) used Automatic Item Generation (AIG) to address the
problem of creating many similar programming exercises using pre-defined templates which
are used for quizzes. The main goal was to ensure consistency in testing many students with
questions of the same level of difficulty. On the other hand, ExGen focuses on generating
ready-to-use exercises for a specific difficulty level and concept that the student is currently
working on. We leveraged the latest advances in LLMs to autogenerate many novel exercises
and filter them to ensure that they are suitable for students. Exercises considered in ExGen
are different from other kinds of programming practices such as faded Parson problems
(Fromont et al. 2023), which require students to fill in code in partially scrambled solutions.

The most relevant work in automatic exercise generation using pre-trained LLMs has
been done by Sarsa et al. (2022). The authors explored OpenAI Codex (which has been
deprecated since Mar 2023) for the purpose of creating new programming exercises and code
explanations. They found that many Codex-generated exercises were sensible and novel, but
may have confusing problem statements, missing or faulty test cases. Sarsa et al. (2022) did
not consider the implementation of an auto-filtering tool to supply students with ready-to-use
exercises at various difficulty levels.

Recently, there has been an increase in the number of works leveraging pre-trained
LLMs for educational purposes. Kasneci et al. (2023) discussed the potential benefits, for
instance content generation and personalized learning, as well as challenges, e.g., model
biases, system brittleness, etc., when applying LLMs to education. Similarly, Becker et al.
(2023) elaborated the educational opportunities of AI code generation, and how educators
should act quickly given these developments. Finnie-Ansley et al. (2023) reported the
performance of OpenAI Codex on real questions from programming courses when compared
to that of actual students. Denny et al. (2023) studied GitHub Copilot, a plug-in for IDEs like
VS Code, which is based on the Codex model, to see what kinds of problem it would not
perform well. The authors also found that prompt engineering can play an important role in
interacting with AI tools like Copilot. MacNeil et al. (2023) found that code explanations such
as line-by-line, high-level summary, and lists of important concepts generated by Codex and
GPT-3 were helpful to most students. Kazemitabaar et al. (2023) studied how Codex's code
generation capability could assist novice programmers via a controlled experiment for young
students. We note that our work focuses on automatic exercise generation and filtering, not
feedback and explanation for code submitted by students.

6. Conclusion

We have implemented and evaluated ExGen, a new software tool that automatically generates
ready-to-use exercises for computing students. ExGen manages a personalized database of
seed exercises and constructs appropriate LLM prompts to obtain candidate exercises for a
requested difficulty level and learning concept. ExGen incorporates a novel combination of
auto-filtering checks which reduce the tedious work of manually inspecting all the generated
output. Our extensive evaluation with more than 600 programming exercises generated using
GPT-3.5-Turbo API demonstrated that ExGen can be used to provide students with ready-to-
use exercises. We plan to investigate new approaches for automatic prompt optimization so
that harder exercises can be generated more easily. As a VS Code extension, ExGen can be
released to our incoming freshmen for further user evaluation in the next academic year.

112

Acknowledgements

This research is supported by the Ministry of Education, Singapore, under its Tertiary
Education Research Fund (Award No. MOE2021-TRF-014). Any opinions, findings and
conclusions or recommendations expressed in this material are those of the authors and do
not reflect the views of the Ministry of Education, Singapore.

References

Becker, B. A., Denny, P., Finnie-Ansley, J., Luxton-Reilly, A., Prather, J., & Santos, E. A. (2023).

Programming Is Hard-Or at Least It Used to Be: Educational Opportunities and Challenges of AI
Code Generation. In Proceedings of the 54th ACM Technical Symposium on Computer Science
Education V. 1 (pp. 500-506).

Denny, P., Kumar, V., & Giacaman, N. (2023). Conversing with Copilot: Exploring prompt engineering
for solving CS1 problems using natural language. In Proceedings of the 54th ACM Technical
Symposium on Computer Science Education V. 1 (pp. 1136-1142).

Finnie-Ansley, J., Denny, P., Luxton-Reilly, A., Santos, E. A., Prather, J., & Becker, B. A. (2023,
January). My AI Wants to Know if This Will Be on the Exam: Testing OpenAI’s Codex on CS2
Programming Exercises. In Proceedings of the 25th Australasian Computing Education
Conference (pp. 97-104).

Fromont, F., Jayamanne, H., & Denny, P. (2023). Exploring the Difficulty of Faded Parsons Problems
for Programming Education. In Proceedings of the 25th Australasian Computing Education
Conference (pp. 113-122).

Joshi, I., Budhiraja, R., Dev, H., Kadia, J., Ataullah, M. O., Mitra, S., ... & Akolekar, H. D. (2023).
ChatGPT--a Blessing or a Curse for Undergraduate Computer Science Students and
Instructors?. arXiv preprint arXiv:2304.14993.

Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., ... & Kasneci, G.
(2023). ChatGPT for good? On opportunities and challenges of large language models for
education. Learning and Individual Differences, 103, 102274.

Kazemitabaar, M., Chow, J., Ma, C. K. T., Ericson, B. J., Weintrop, D., & Grossman, T. (2023).
Studying the effect of AI Code Generators on Supporting Novice Learners in Introductory
Programming. In Proceedings of the 2023 CHI Conference on Human Factors in Computing
Systems (pp. 1-23).

Keuning, H., Jeuring, J., & Heeren, B. (2018). A systematic literature review of automated feedback
generation for programming exercises. ACM Transactions on Computing Education (TOCE),
19(1), 1-43.

Koutcheme, C. (2022). Towards Open Natural Language Feedback Generation for Novice
Programmers using Large Language Models. In Proceedings of the 22nd Koli Calling
International Conference on Computing Education Research (pp. 1-2).

Kurdi, G., Leo, J., Parsia, B., Sattler, U., & Al-Emari, S. (2020). A systematic review of automatic
question generation for educational purposes. International Journal of Artificial Intelligence in
Education, 30, 121-204.

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2023). Pre-train, prompt, and predict: A
systematic survey of prompting methods in natural language processing. ACM Computing
Surveys, 55(9), 1-35.

MacNeil, S., Tran, A., Hellas, A., Kim, J., Sarsa, S., Denny, P., ... & Leinonen, J. (2023). Experiences
from using code explanations generated by large language models in a web software
development e-book. In Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1 (pp. 931-937).

Sarsa, S., Denny, P., Hellas, A., & Leinonen, J. (2022). Automatic generation of programming
exercises and code explanations using large language models. In Proceedings of the 2022 ACM
Conference on International Computing Education Research-Volume 1 (pp. 27-43).

Ta, D., Shar, l. K., & Shankararaman, V. (2022). AP-coach: Formative feedback generation for
learning introductory programming concepts. In Proceedings of IEEE International Conference
on Teaching, Assessment, and Learning for Engineering (TALE).

Zavala, L., & Mendoza, B. (2018). On the use of semantic-based AIG to automatically generate
programming exercises. In Proceedings of the 49th ACM technical symposium on computer
science education (pp. 14-19).

113

