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Abstract: Research on computational thinking (CT) have received significant attention 
in recent years, but how CT and mathematical thinking (MT) work together to influence 
problem solver’s computational strategies and competency has not been illuminated. 
Taking the method of thematic analysis combined with a conceptual framework of 
flexibility in programming-based mathematical problem solving, this study aims to shed 
light on the interplay between CT and MT. We identify two kinds of flexibility when a 
problem solver engages in programming-based mathematical problem-solving: 
translation flexibility and integrated flexibility. We hope that this research will contribute 
to a deeper understanding of the interplay of CT and MT as a basis for conceptualizing 
an interdisciplinary form of STEM education and thinking on task design, pedagogy, 
and assessment approaches of CT-based mathematics instruction. 
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1. Introduction 
 
Computational thinking (CT) is regarded as a fundamental skill required in daily life, and a 
kind of analytical thinking that shares common characteristics with mathematical thinking 
(MT) in many ways (Wing, 2011). Thus, researchers have investigated ways to integrate CT 
into mathematics teaching and learning (e.g., Ng & Cui, 2021). However, one of the key 
challenges is to understand how CT and MT work together to influence students’ strategies 
when engaging in mathematical problem-solving in computational contexts. Previous studies 
have identified discrepancies between CT and MT, which make mathematical problem-
solving in computational contexts more challenging for students (Cui & Ng, 2021). Therefore, 
understanding the complex relationship of CT and MT is vitally important if CT is to be 
meaningfully integrated into mathematics education.  

While the breadth of research has advanced the empirical basis of understanding what 
CT-based mathematics instruction entails, very little is currently known about the processes 
of how CT and MT specifically work together in this context. Meanwhile, noting the diversity 
of solution strategies in the CT-based mathematical problem-solving, research on flexibility 
in mathematical problem-solving may provide possible directions for our attempts to explore 
the interplay between CT and MT. Flexibility refers to “the ability to change according to 
particular circumstances” (Star & Seifert, 2006, p. 281), which relies on the problem solver’s 
understanding of the knowledge relevant to the problem situation. If the problem context is 
extended to a CT-based mathematical problem, not only would multiple programming 
solution strategies be possible, but the problem solvers would also require knowledge of 
programming and mathematics, as well as to adapt this knowledge according to the 
programming environment used and mathematical ideas involved respectively within the 
problem context. In this study, we are interested in delving into this very interplay between 
CT and MT from perspective of flexibility. Therefore, the study is guided by the research 
question: What types of flexibility are exhibited during CT-based mathematical problem-
solving? 
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2. Theoretical ackground 
 

 
 
In this study, we define CT as “the thought processes involved in formulating problems and 
their solutions so that the solutions are represented in a form that can be effectively carried 
out by an information-processing agent” (Wing, 2011, p. 20), and MT not as “thinking about 
the subject matter of mathematics but a style of thinking that is a function of particular 
operations, processes, and dynamics recognizably mathematical” (Burton, 1984, p. 35). In 
other words, both CT and MT refer to the cognitive structures that govern an individual’s 
programming and mathematical activities respectively, as well as the anticipation of the 
results of those activities. CT is thought to share a similar approach to MT in problem solving 
(Wing, 2011). Researchers also attempted to find out some of the empirical connections 
between CT and MT, with some reckoning that CT and MT are mutually supportive or have 
overlapping features. For example, Ng and Cui (2021) argued that mathematical exploration 
can serve as a site that allows students to engage in CT in meaningful ways. On the other 
hand, the presence of CT and MT may occur in mismatching ways. As Rich and colleagues 
(2018) point out, mathematics focuses on students’ flexible arithmetic operations and 
arithmetic strategies, while CT focuses on sequence so that the computer can recognize and 
execute. While these studies point to an inter-relationship between CT and MT (e.g., CT 
support MT, or vice versa, or the two are constraining), the conclusions are relatively broad 
and lack a detailed perspective on how such facilitative or hindering relationships of CT and 
MT arise and develop. That is, there requires more evidence to capture the presence or 
expression of CT and MT in a clear way and how they affect students’ thinking processes 
when they engage in CT-based mathematical problem solving. 
 

 
 
Flexibility is considered to be a key competency in problem solving. Even if research 
focusing on flexibility has been studied extensively in different domains of mathematics, 
there has been little research on interdisciplinary flexibility, that is, how flexibility manifest 
across different subject domains. In particular, the flexibility of working across CT and MT in 
the context of CT-based mathematical problem-solving not yet been empirically studied and 
analysed. In this study, we adopt flexibility as “knowledge of multiple strategies and the 
ability to select the most appropriate strategy for a given problem and problem-solving 
circumstances” (Star et al., 2022, p. 2) so that we can observe how flexibility are 
demonstrated through various tasks in our designed CT-based mathematical problems. This 
investigation can potentially refine our understanding of how problem solvers make 
connections between computational and mathematical concepts. In particular, we pay 
attention to the tasks in which problem solvers are situated to translate between 
mathematical and programming language or integrate mathematics concepts and 
computational concepts while making meaningful connections of CT and MT.  When 
analysing these tasks, we recognise that programming itself is a tool-mediated activity; 
therefore, the instrumentation of different programming tools would necessitate different 
kinds of CT-MT translations and connections to occur. For this reason, we choose to 
address one specific programming language, Scratch. 
 
3.  
 

 
 

This study is part of a larger design-based research addressing the research objectives 
of designing a series of tasks for supporting computationally enhanced mathematical 
problem-solving in school mathematics classrooms, and of studying student learning 
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trajectories in terms of developing their CT, MT, and problem-solving competence in the 
designed tasks. The participants in this study were from two programming-based 
mathematical problem-solving programs. One was a student program, which was design-
based research (DBR) undertaken with three iterative cycles of implementations with 
seventh to ninth grade (age 12 to 15) students (n = 95) from three secondary schools in 
Hong Kong. Another one was a teacher program, which adopted task-based semi-structured 
interview to collect data. Eight in-service mathematics teachers from different schools in 
Mainland China, participated in a five-week online professional development workshop in 
Scratch programming. The two programs were conducted independently upon obtaining 
participants consent, with the student program being undertaken in 2021 and the teacher 
program being conducted in 2022 via Zoom.  

In this study, we adopt the method of thematic analysis to further interpret the 
translation/connection involved between CT and MT in the programming solutions to the 
chosen tasks through the lens of flexibility. As the purpose of this study was to explore the 
flexibility of learners’ strategies in solving programming-based mathematics problems, 
although participants included two different groups (i.e., students and in-service mathematics 
teachers), we believe our data still appropriate to answer the RQs, since the programming 
solutions, as opposed to the participants (or problem solvers) were the focus of this study. 
 

 
 
Each program contained an introduction game and several tasks related to four domains: 
number, algebra, geometry, and data handling. A total of 18 tasks were studied in response 
to the research question posed, in which students program contained 14 tasks (1 
introduction game, 5 in number and algebra, 4 in geometry, 4 in data handling) and teachers 
program contained 4 tasks with one task in each topic. All tasks are programming-based 
mathematical problems and are all open-ended problems with no fixed coding strategy. For 
example, “Please write a code project that can be used to verify whether an entered number 
is prime or not.” Coding-related solutions are all thought out and collaborated by participants 
(students or teachers). The researchers will observe participants’ problem-solving process 
and guide the participants to reflect through task-based interviews at the appropriate time, 
which aims to understand what they think and to help them solve the difficulties they 
encounter during the programming process. Therefore, our data include (a) video and voice 
recording of interactions and interview between researchers and participants; (b) collection 
of field notes, screen capturing, developed artefacts and documents in both programs, which 
help us to gain a deep understanding of the research questions. 

As a qualitative analysis method to identify, analyze and report patterns of data (Braun 
& Clarke, 2006), thematic analysis is regarded as an effective approach for identifying 
similarities and differences, yielding unforeseen insights and summarizing key features of a 
large data set (Nowell et al., 2017). Therefore, we adopted thematic analysis with the aim to 
identify how participants exhibited flexibility in their programming solutions for mathematical 
problems. Taking our designed tasks and participants programming solutions as the unit of 
analysis, we conducted latent thematic analysis, which developing the themes necessitates 
interpretive effort and the resulting analysis is not just descriptive, but is already theorized 
(Braun & Clarke, 2006). Our analysis was implemented following the six steps of doing 
thematic analysis outlined by Braun and Clarke (2006). 
 
4.  
 
By analyzing and generalizing participants’ problem-solving strategies in solving CT-based 
mathematical problems, the results of the thematic analysis yielded two main kinds of 
flexibility (i.e., translation flexibility and integrated flexibility) and six sub-categories. 
Translational flexibility refers to a cross-disciplinary, cross-problem context capability that 
involves translation between mathematical and programming language, with the two 
processes being independent. In contrast, integrated flexibility is an overall capability similar 
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to flexibility in a mathematical problem context (e.g., to solve an algebra equation; Star & 
Seifert, 2006). It is the flexibility to solve problems in a programming environment that 
involves the use of knowledge from both disciplines, with the MT and CT realizations being 
inseparable as a whole. Due to the length of the article, we will only cover integrated 
flexibility in detail with a geometry example. 

One of the most evident examples of integrated flexibility is the setup of subroutines, 
often known as creating My Blocks in Scratch. As an important CT concept, subroutines can 
be divided into two types. One is the parameterless subroutine, which calls an entire piece of 
code directly and repeatedly as a whole, without altering it before or after the subroutine 
function is invoked, but rather given it a separate name for wrapping (Figure 1a-b). This type 
of subroutine does not require programmer to make any adjustments to the codes. Instead 
of executing the original code directly, another kind of subroutine with parameters requires 
programmers to comprehend the section of codes in its entirety, identify the key attribute and 
numerical relationships between them, and then modify the codes by abstracting parameters 
to be a subroutine (Figure 1c). In this section, we will focus on subroutines with parameters 
and the related integrated flexibility will be examined through a geometry drawing task. 
 

 
(a)                    (b)                          (c)                               (d) 

Figure 1. Setting of My Blocks as Subroutine in Scratch 
 
As we know, to draw a regular polygon in paper-and-pencil context, we first need to 

know the polygon’s side length, the degree of interior angles, then to draw it with a ruler and 
a protractor. While to achieve this mathematical process in Scratch, the Pen function is used 
to record the trajectory of a Sprite. For example, to draw a regular pentagon with side length 
of 50, the pen needs to [move 50 steps, turn clockwise 72 degrees] then repeat this process 
five times (Figure 1a). The code at this point does not yet make use of subroutine, but if 
programmers try to use My Block to simplify the programming process or design a program 
that can change the size and shape of the polygon at any time, mathematical consideration 
is required for setting parameters in the subroutine (Figure 1c-d).  

It is worth noting that the process of changing the original codes (Figure 1a) to a piece 
of code with subroutine (Figure 1c-d; Figure 2a-b) requires the involvement of both MT and 
CT. The interplay between CT and MT is evident in this integration, particularly in the 
different strategies from Figure 1c-d to Figure 2a-b. For example, programmers can abstract 
a parameter “side length” in the My Block and replace all the numbers or variables in the 
source code that represent the length of the sides to create a subroutine served to control 
the size of a pentagon (Figure 1c). Here, we can see that such a change is mediated by both 
CT and MT because one may have to figure out which variable represent the side length that 
can be a parameter in the subroutine. CT support programmers to create the subroutine, 
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while MT helps determine the first parameter in the subroutine, i.e., the size of the polygon is 
determined by the length of the sides. However, when the programmer went on to optimize 
the subroutine so that it can also change the shape of the polygon, it does not mean that 
mathematical property “different polygons have different interior angles” makes it possible to 
add a second parameter “exterior angle” directly to the My Block in Figure 1c. Otherwise, 
even if the second parameter “exterior angle” is added to the My Block (Figure 1d), it will not 
be possible to draw any other regular polygon than a regular pentagon, because only with 
the parameter “polygon 50 72” will the matching angle and number of sides can form an 
enclosed polygon. This is because the number of sides and the degree of interior angles 
determine the shape of the polygon, while the subroutine in Figure 1c only contains codes of 
[move 50 steps, turn clockwise 72 degrees] five times which does not have the function to 
change number of sides that follow the change of degree of exterior angle. The key to solve 
such problems is the effective coordination of CT and MT. 

 

 
(a)                                                        (b) 

Figure 2. Setting of My Blocks as Subroutine 
 

Furthermore, although the subroutine in Figure 2a with three parameters (i.e., 
“side_length”, “exterior_angle”, “number_of_sides”) can change the size and shape of the 
regular polygon, there actually exists a specific quantitative relationship between the degree 
of exterior angle and the number of sides, i.e., degree of exterior angle = 360/number of 
sides, so the My Block in Figure 2a can be optimised to a subroutine with only two 
parameters affecting the shape (number_of_sides) and size (side_length) of the polygon in 
Figure 2b. This reveals the synergy between CT and MT in the process of setting up 
subroutines with parameters. Thus, we can observe that during the process of setting 
subroutines, the key concepts of CT (subroutines, loops) and MT (mathematical properties) 
constrain and facilitate each other: When problem solvers want to set up flexible subroutines 
that can change the shape and size of regular polygons, CT concepts such as subroutines 
and loops play a key role in supporting the adaptation of the program, while quantitative 
relationships in mathematics involved in MT responsible for decision making on parameters 
setting in the subroutine, the choice of using which CT concepts and how they are used. 
That is, the number of sides determine the number of loops; the parameters of the 
subroutines are the attributes that control size and shape the length and the number of 
sides, respectively. It is in the combined effect of CT and MT that provide opportunity for 
programmers to abstract the key parameter that determines the shape of a regular polygon. 
We have named such an integrative programming process as “integrated flexibility” in which 
CT and MT co-exist and support each other.  
 
5. Discussion 
 

Overall, translation flexibility is a cross-disciplinary, cross-problem context competence, 
while integrated flexibility is a holistic capability similar to flexibility in mathematical problem 
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contexts (Star et al., 2022; Star & Seifert, 2006), that is, the general flexibility to solve 
problems in a programming environment that includes knowledge from both mathematics 
and programming disciplines. It involves a complex interaction between MT and CT which 
different from the one-way conversion of translation flexibility. In general, integrated flexibility 
is more often found in the process of selecting a CT technique when the problem solver has 
a clear mathematical solution. It is vital to take into account which mathematical approach 
and which CT technique are compatible. If the two do not match, adjustments must be made 
to the mutual circumstance in order to develop an effective programming solution. 

 We believe such a conceptual framework has potential for understanding the mutual 
cognitive development in CT and MT, including how mathematical concepts co-emerge with 
programming processes in a problem-solving context, and the role of CT in such processes. 
We understand that because programming is a tool-mediated activity, different programming 
tools will be instrumented differently, necessitating various CT-MT translations and 
interactions. It is hoped that this research will contribute to a deeper understanding of the 
interplay of CT and MT as a basis for conceptualizing an interdisciplinary form of STEM 
education and thinking on task design, pedagogy, and assessment approaches of CT-based 
mathematics instruction. Moreover, the findings will offer theoretical contributions that inform 
researchers and mathematics educators in terms of student learning characteristics during 
CT-based mathematics instruction. Finally, we have noticed that our data from two different 
participant groups exhibit some comparable features of flexibility, which may point to a 
certain universality of problem solvers’ flexibility in programming-based mathematical 
problems. As a concluding remark of the paper, we pose several questions that arise from 
our exploration—Given the existence of multiple solutions, are the prevailing programming 
solutions simpler or more complex to solve the problem? Why are these approaches more 
common? What factors are relevant to them? How are the problem solvers’ flexibility to use 
different types of translations affected by their CT and MT? We call for more research to 
consider the different kinds of flexibility demonstrated in CT-based mathematical problem 
solving to sketch the big picture of how CT and MT emerge in complementary or 
mismatching ways. 
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