Shih, JL. et al. (Eds.) (2023). Proceedings of the 31% International Conference on Computers in Education.
Asia-Pacific Society for Computers in Education

Analysis of algorithmic strategy
development in the development of
computational thinking of upper
elementary school students

Xiaowen WANG, Pinqgi HU & Guang CHEN®
Faculty of Education, Beijing Normal University, Beijing, China
*guang@bun.edu.cn

Abstract: Computational thinking has become a thinking ability that we need to master
in our daily lives. Programming is a way to cultivate computational thinking. This study
focuses on the algorithmic links of senior primary school students in programming
activities, puts forward a hierarchical table of algorithmic strategies, and analyzes their
strategic development paths according to their programming behaviors.In this paper,
Swift Playgrounds, developed by Apple Company, is selected as the tool of
programming activities, and three levels are selected as the teaching content in the
three theme activities of Learning Programming 1 in Swift Playgrounds software. The
target audience of the activities is the senior (fourth to sixth grade) students in primary
schools. This paper studies the design of the micro-generation method, carries out
programming activities based on computational thinking for students through pre-test,
practice, post-test and migration stages, and collects data by interview and classroom
observation so as to analyze the development path of students' algorithm strategies in
different stages and the change track of algorithm strategies in each stage.This study
provides some support for teachers' teaching in programming teaching activities.

Keywords: Programming teaching activities, computational thinking, micro-genetic
method, algorithm strategy

1. Introduction

In the context of the rapid development of information technology, society has put forward
new requirements for people's abilities and accomplishments. People should learn to
understand some problems encountered in social production, life and learning from the
perspective of computer science, and be able to use the basic principles of computer science
and advanced technical tools to solve complex and difficult problems (Tedre & Denning,
2016).

Computational thinking is a key research topic in computer education. Different
researchers have different definitions of computational thinking, but the definition of
computational thinking proposed by Jeannette, which includes five elements: algorithms,
decomposition, abstraction, generalization and debugging, has been widely recognized by
researchers all over the world. Jeannette believes that computational thinking includes
thinking activities such as problem-solving, designing systems, and understanding human
behavior. This is not only a skill that scientists need to possess, but also a skill that every one
of us needs to possess (Jeannette, 2006).

As one of the ways to cultivate computational thinking, programming education can
cultivate students' systematic problem-solving and strategic thinking abilities. In the process of
programming, students can not only learn some basic knowledge but also learn logical
methods and problem-solving strategies through specific problem situations, so it becomes a
powerful starting point for cultivating computational thinking (Winslow et al. ,2018).

388



According to the cognitive development level and thinking development process of
primary school students, primary school students above grade three are gradually
transitioning from image generalization level to abstract generalization level, and their
reasoning ability is also in a stage of rapid development. They can independently and logically
demonstrate more complicated judgments and processes. Therefore, at this stage, students'
computational thinking can be cultivated through programming teaching. For example,
Saez-Lopez et al.(2016) through on-the-spot evaluation of the effect of using Scratch's visual
programming language in classroom practice, explore whether students have made
significant progress in learning programming concepts, logic and computational practice;
Zhao & Shute(2019) asked students to play "Penguin Go" video game in the classroom, that
is, to create a program to guide penguins to cultivate students' cognition and attitude towards
the development of computational thinking skills through a regional approach; On the other
hand, Chen-Chung et al.(2011) designed a simulated game to let students learn and use
programming knowledge to solve situational problems, and explored the influence of
simulated games on learning experience and problem-solving strategies related to
programming knowledge. Pellas & Peroutseas(2016) showed students their participation in a
3D multi-user game environment by combining Second Life with Scratch4SL's 2D
programming environment and used them to develop computational thinking skills in
collaborative problem-based programming tasks.

To sum up, most of the current research on computational thinking focuses on the
development and effect research of computational thinking activity courses, and the research
on students' behavior in the process of computational thinking is relatively lacking. This study
focuses on the cultivation of students' algorithm strategies in computational thinking activities.
Starting with the basic programming knowledge, it studies the strategies and behaviors used
by students when using programming knowledge to solve problems, and provides support for
front-line teachers' programming teaching process.

Therefore, this study intends to solve the following problems:

(1) What are the algorithm strategies that students mainly use at different stages of
different programming activities?

(2) What are the development paths of students' algorithms and strategies at different
stages of the same programming activity?

2. Methods

In this study, the micro-generation method is used to study the changing process of
students' algorithm strategies in the programming process, which is an exploratory preliminary
study. This study mainly analyzes the development of algorithm strategy among senior
primary school students in Swift Playgrounds-based programming activities, and further
analyzes the path of students' strategy development according to the algorithm strategy grade
table.

The whole teaching process of programming activities is divided into three thematic
activities: command, function and For loop. Each thematic activity is divided into four stages:
pre-test, exercise and post-test. After the completion of the three thematic activities, a
complete programming project is carried out and used as a test in the migration stage. And
through interviews and classroom observation to collect data. The interview method is mainly
used to interview students after each stage in the process of teaching by the micro-generation
method so that students can orally express what strategies are used to complete this part of
the challenge and why such strategies are used to solve the problem. Classroom observation
is mainly used to track and record the development of students' algorithm strategies in class
so as to further analyze students' algorithm strategies.

The research object of this study is the students in senior grades (grade four to grade six)
in primary schools, and they are recruited through online registration. A total of 15 students
were recruited, including 12 boys and 3 girls, aged between 10 and 12, with an average age of
10.9 years and a standard deviation of 0.59. There are 12 fourth-grade students, 2 fifth-grade
students and 1 sixth-grade student. During the implementation of the activity, a total of 15
students participated, but 2 students failed to complete all the courses. After the

389



implementation of the activity, a total of 15 students' learning data were received, of which 13
were valid. Among the valid data collected, from the point of view of school distribution, 9
people are studying in primary schools in Beijing, while 4 people finish their usual studies at
home. In terms of gender, there are 10 boys and 3 girls, with an average age of 10.2 years and
a standard deviation of 0.38.

This experiment is divided into three courses, and the content taught in each course is
exactly the same. During the class, each student is recorded on an iPod Touch. At the same
time, the iPad used by the students turns on the screen recording function, and a
corresponding number of graduate teaching assistants are equipped for stage interviews and
behavior tracking.

In this experiment, there are 15 subjects, who have completed 12 levels of programming
game challenges in 3 theme activities, and designed 19 interview questions in the pre-test,
practice, post-test and migration stages. Based on this, the obtained data is encoded.
Combined with the specific programming behavior of middle school students in this research
course, the algorithm strategies used by students in this programming process are
summarized and classified, and according to the path and order of children's cognitive
development from low-level strategies to high-level strategies, three experts in the field of
psychology are invited to divide students' algorithm strategies into four levels, namely,
zero-level strategies, first-level strategies, second-level strategies and third-level strategies.
According to the different development characteristics of each level strategy, combined with
students' specific algorithm behavior, the different level strategy characteristics of algorithm
strategy are defined, and according to the video analysis and interview answers of 13 subjects'
programming activities in Study 2, three experts teach coders to encode independently, finally
improve the algorithm strategy level, and analyze the reliability according to the consistency
percentage formula proposed by Holsti in content analysis. The r (reliability) of the algorithm
strategy rating table is 0.9, and the reliability of the evaluation records of three judges, A, B
and C, is greater than 0.9, which shows that the evaluation result of the main judge can be
used as the result of content analysis, which achieves the consistency of coders. The strategy
level rating table is shown in the following table:

Table 1. Level Table of Algorithm Strategy
Algorithm Strategy Level Definition
In the process of the algorithm, we rely on our own subjective
judgment and experience to complete the algorithm.

On the basis of subjective judgment, simple methods are used
Level 1 to complete the level goal, and the simple methods are limited
to the commands involved in the level goal.

On the basis of simple methods, use appropriate methods to
complete the level goal, but it is limited to simpler scene goals.
On the basis of appropriate methods, draw inferences from
Level 3 others and think independently about the best method needed

to complete the checkpoint goal.

Level O

Level 2

3. Results and Discussion

This chapter will analyze the data collected in the previous section. The study mainly uses
qualitative analysis to investigate the changes in students' strategies and behaviors in the
process of programming. It mainly uses encoding the video of students' entry into the
classroom, and analyzing the interview contents in the pre-test, practice, post-test and
migration stages to discuss the changes in students' strategies in the programming process.
According to the micro-generation method, the breadth analysis of the same programming
activity in pre-test, practice, post-test and migration stages is carried out. Mainly through the
three theme activities, students' individual development routes are carried out, and the
individual development roadmap is drawn according to the development of children's strategic

390



level at different stages. Based on this road map, this paper analyzes the migration degree of
students' algorithm strategies of three theme activities in the migration stage.

3.1 The development route of individual algorithm strategy in command theme
activities.

From the roadmap of individual development of the algorithm, it can be seen that five
people in the algorithm strategy of command theme activity have developed from Level 0 to
Level 2; One person developed from Level 0 to Level 2 and then dropped to Level 0 and then
to Level 2; Two people developed from Level 0 to Level 2 and then fell to Level 1 and then to
Level 2; Five people directly developed from Level 1 to Level 2. There are four strategic
development paths in total.

From the development path of algorithm strategy, all students use low-level strategy in
the pre-test stage of command theme activities. In the practice stage, students can easily
master this method after teachers teach the method of counting grids and planning the
shortest route, so the second-level strategy is used the most frequently in the post-test stage,
but a small number of students still use low-level strategy. In the migration stage, students'
algorithms all develop into high-level strategies, which also shows that in the algorithm
strategy of command sentences, low-level strategy is a monotonically decreasing
development model, and high-level strategy.

ONONORONO

&
©
©
—
©
©

©

Figure 1. Roadmap of individual development of command theme activity algorithm strategy
3.2 The development route of individual algorithm strategy in function theme activities.

From the roadmap of individual development of the algorithm, it can be seen that four
people in the algorithm strategy of function theme activity have developed from Level 1 to
Level 3; Five people have developed from Level 1 to Level 3 and then dropped to Level 1; Four
people developed from Level 1 to Level 2 and then fell to Level 1. There are three strategic
development paths in total.

In the development path of algorithm strategy, all students use low-level strategy in the
pre-test stage. Through the function method teaching in the practice stage, students' algorithm
strategy has reached the second and third levels, but in the migration stage, Level 2 has
dropped to Level 0, the most frequently used strategy level is the first-level strategy, and the
third-level strategy is also used by students. It shows that in this part of the function, students
do not fully grasp the definition and usage of the function and learn to draw inferences from
others. The usage times of low-level strategies and high-level strategies are evenly distributed,
and the students' algorithm strategies are not developing from low-level strategies to
high-level strategies, but the development modes of low-level strategies and high-level
strategies fluctuate and alternate constantly.

391



4
4
5

OO0

Figure 2. Roadmap of individual development of function theme activity algorithm strategy

3.3 The development route of the overall algorithm strategy for loop theme activity.

From the roadmap of individual development of the algorithm, it can be seen that one
person in the algorithm strategy of “For loop” theme activity has developed from Level 1 to
Level 2; There are 12 people who have always maintained the level of secondary strategy.
There are two strategic development paths in total.

In the theme activity of “For loop”, students' algorithm and strategy have maintained a
high level from the pre-test stage to the migration stage, even though the most frequently used
strategy in the post-test stage is the first-level strategy. This is because in the post-test stage,
it is necessary to customize the function and use the loop to write the code. According to the
development map of algorithm and strategy in the function part, students can master the
definition and usage of For loop skillfully in this part. So on the whole, the development of
advanced strategies is constant.

O——O——0—0
OO0

Figure 3. Roadmap of Individual Development of Algorithm Strategy for Cyclic Theme Activity

Synthesizing the development paths of algorithm strategies of the three theme activities,
we can get the following results: the proportion of algorithm strategies used by middle school
students in command activities and “For loop” activities is getting higher and higher, and the
overall trend is from low-level strategies to high-level strategies, but in the later period,
low-level strategies have not all disappeared, and some students still use low-level strategies
to solve problems; The strategy development path of the function part shows this point more
clearly. The algorithmic strategy of the function part develops alternately. Even if students
learn more advanced function knowledge in the practice stage, more students still choose
lower-level codes to replace the function strategy in the migration stage, which shows that
students' cognitive strategies do not completely develop from low-level strategies to advanced
strategies, but students subconsciously choose their most skilled and direct strategies by
relying on their own knowledge and pre-concept experience in different situations.

4. Conclusion

This study uses the micro-generation method to study the changes of students' strategic
behavior in programming activities, and makes a preliminary exploration in programming
education. Through this study, it was found that students use different algorithm strategies
when completing different programming activities. In such simple programming activities as
command statements and For loop, students can use advanced strategies taught by teachers
to complete tasks, which shows that students' algorithm strategies are constantly developing
from low level to high level, and the migration effect of algorithm strategies is obvious.
However, in such difficult programming activities as function statements, the algorithm
strategies used by students before and after teacher intervention are not the methods taught
by teachers, but their own subconscious strategies, which shows that the algorithm strategies
have not developed from low level to high level in this link, and the transfer effect is not
obvious. Therefore, the development of cognitive strategies is complicated, and students need
certain cognitive resources for learning strategies, and choose the most appropriate cognitive
strategies to solve problems according to specific situations.

392



The results of this study also show the differences in the development of students'
cognitive strategies in mathematics. For example, in the "function" activity of this study, the
teacher taught more advanced methods, but some students who had not been exposed to
programming before did not master this method, so they still used their own methods in the
subsequent task level, and in the cognitive development of arithmetic, all students can always
complete the corresponding tasks according to the methods taught by the teacher. It shows
that some students don't have the pre-concept of programming activities, so they can't finish
coding and debugging according to the statement logic in programming in a short time.
However, arithmetic activities are activities that students have been exposed to since
childhood, and students can combine the relevant experience and pre-concept in the process
of growth with the methods taught by teachers, and finally complete the corresponding tasks.

Therefore, on the whole, the development of children's cognitive strategies is complex
and specific. Complexity is reflected in the fact that students do not completely abandon the
low-level strategies formed by previous conceptual experience in the process of solving
problems after learning more advanced strategies, but form a competitive relationship
between low-level strategies and high-level strategies in the process of thinking. Although
using more advanced strategies may increase the efficiency of solving problems, they are still
in the process of accepting and understanding the more complicated and difficult advanced
strategies they have just learned, which requires a lot of cognitive resources. It is impossible to
complete a flexible application, so the specificity of cognitive strategy development is formed:
students choose the most suitable strategy according to different environments to achieve the
goal of solving problems.

There are also some shortcomings and defects in the design and implementation of this
study. From the experimental link and process, this experiment focuses on the development
process of students' algorithm strategy in programming activities, that is, based on whether
they successfully complete the checkpoint task, while ignoring whether students have written
wrong and redundant codes that will not affect the final task. Therefore, in the future research
and development of this kind of programming software, the process can be designed more
strictly, and if irrelevant code appears, it should also be prompted or challenged to fail, so as to
ensure that students can successfully write and run the code not because of luck or subjective
judgment. In addition, the selection of subjects in this experiment is not rigorous. Some
students have already used Swift Playgrounds before taking part in the activity, so the results
obtained in the pre-test stage and practice stage are not much different from those obtained in
the post-test stage and migration stage, which leads to the unconvincing effect of the
experiment.

References

Tedre, M., & Denning, P. J. (2016). The long quest for computational thinking. Proceedings of the 16th
Koli Calling International Conference on Computing Education Research, 120-129.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through
programming: What is next for K-12? Computers in Human Behavior, 41, 51-61.
https://doi.org/10.1016/j.chb.2014.09.012

Jeannette, M. W. (2006). Computational thinking. COMMUNICATIONS OF THE ACM, 49(3)

Winslow, B., Danielle, B. H., Katherine, J. N., Ken, P., Natalie, F., Camilla, N. J., Byron, L., Patrick, L., &
Kasia, M. (2018). Active Learning Environments with Robotic Tangibles: Children's Physical and
Virtual Spatial Programming Experiences. TLT, 11(1)

Saez-Lopez, J., Roman-Gonzalez, M., & Vazquez-Cano, E. (2016). Visual programming languages
integrated across the curriculum in elementary school: A two year case study using "Scratch" in
five schools [Article]. COMPUTERS & EDUCATION, 97, 129-141.
http://doi.org/10.1016/j.compedu.2016.03.003

Zhao, W., & Shute, V. J. (2019). Can playing a video game foster computational thinking skills?
COMPUTERS & EDUCATION, 141, 103633. http://doi.org/10.1016/j.compedu.2019.103633

Chen-Chung, L., Yuan-Bang, C., & Chia-Wen, H. (2011). The effect of simulation games on the learning
of computational problem solving. Pergamon, 57(3)

Pellas, N., & Peroutseas, E. (2016). Gaming in Second Life via Scratch4SL: Engaging High School
Students in Programming Courses. JOURNAL OF EDUCATIONAL COMPUTING RESEARCH,
54(1), 108-143. http://doi.org/10.1177/0735633115612785

393



