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Abstract: Knowledge Tracing (KT) models a learner’s knowledge state by analyzing 
past responses to predict future performance. While traditional KT models focus on 
response correctness, few studies incorporate learning activity data during study 
sessions. This study proposes a KT model that integrates features from digital textbook 
viewing logs to enhance knowledge estimation. Experiments on a university course 
dataset demonstrate that incorporating study-related contextual information improves 
prediction performance, highlighting the impact of digital learning behavior on KT. 
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1. Introduction 
 
With the advancement of ICT, EdTech services such as Learning Management Systems 
(LMS) and digital textbooks have become widely adopted, enabling data-driven learning 
support. Knowledge Tracing (KT) utilizes learner’s past learning activity data, such as 
correctness of responses, exercise content, and response time, to estimate their knowledge 
state and predict future performance. However, conventional KT models primarily rely on 
exercise records, which fail to capture broader learning behaviors beyond exercises. 

Learning activities have been analyzed and utilized for grade prediction by leveraging 
log from LMS, e-portfolio systems, digital textbooks (Okubo et al,. 2017). However, many 
existing Knowledge Tracing (KT) models primarily focus on exercise response histories and 
may not sufficiently account for such diverse learning activities. 

To address this limitation, this study enhances KT models by integrating digital 
textbook reading behaviors, specifically leveraging reading duration adjusted by content 
similarity between textbook materials and exercises. We validate our model by comparing it 
with a conventional exercise-based KT model, using a dataset collected from a university 
lecture. The models are evaluated using five key metrics (e.g., AUC, RMSE) to assess how 
the integration of learning process data influences predictive accuracy. 

Our approach demonstrates improvements in knowledge state estimation by 
incorporating learning process information into KT models, highlighting the potential of 
integrating diverse learning activities beyond exercises. 
 
 

2. Related Work 
 

2.1 Knowledge Tracing (KT) 
 
Knowledge Tracing (KT) is a task that estimates a learner’s knowledge state based on the 
correctness of previously solved problems and predicts the correctness of the next problem. 
The advantages of KT include providing feedback on estimated proficiency levels and 
applications for personalized support tasks. The first KT model was Bayesian Knowledge 
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Tracing (BKT), proposed by Corbett and Anderson (1995), which utilized a Bayesian Network. 
However, since Piech et al. (2015) introduced Deep Knowledge Tracing (DKT) using a 
Recurrent Neural Network (RNN), research on KT models based on deep learning has gained 
significant attention. Other KT models include Self-Attentive Knowledge Tracing (SAKT) 
(Pandey and Karypis, 2019), which employs a Multi-head Attention mechanism.  
 Recent studies have incorporated various types of learner information. For example, 
Lu et al. (2024) utilize action logs to model students’ knowledge states. However, such 
approaches cannot explicitly capture the content relevance between the learning and the 
predicted problems. We address this by integrating view time of relevant textbook pages into 
the attention mechanism. 
 
 

3. Proposed Method 
 

3.1 Knowledge Tracing Definition and Problem Formulation 
 
In this study, KT is defined as follows: At each time step 𝑡, a learner’s solved exercise is 

represented as  𝑒𝑡, and its correctness is denoted as  𝑟𝑡, where 𝑟𝑡 = 1 if correct and 𝑟𝑡 = 0 
otherwise. The interaction at time step 𝑡 is then defined as 𝑥𝑡 = (𝑒𝑡 , 𝑟𝑡). Thus, KT is a task that 

predicts the correctness probability 𝑟̂𝑡+1 for the exercise 𝑒𝑡+1 at time step 𝑡 + 1, based on the 

sequence of past interactions (𝑥1, 𝑥2, … , 𝑥𝑡), aiming to make 𝑟̂𝑡+1 as close as possible to the 
actual correctness 𝑟𝑡+1. In KT, 𝑒𝑡 can be represented either at the exercise level or at the 

Knowledge Component (KC) level. However, in this study, we adopt the exercise-level 
representation. 
 

3.2 Self-Attentive Knowledge Tracing (SAKT) and the Proposed Model 
 
Figure 1 illustrates the overall architecture of the proposed model, which is derived from Self-
Attentive Knowledge Tracing (SAKT) with modifications to incorporate additional learning-
related information. 

SAKT uses the exercise vector, whose correctness is to be predicted, as the query, 
while interaction vector with positional encoding serves as the key and value. These inputs 
are fed into the Multi-Head Attention mechanism, which generates an intermediate 
representation. Next, this representation is passed through a feedforward network to produce 
the output 𝐅. Finally, the Prediction Layer converts 𝐅 into the correctness probability. Binary 
cross-entropy is used as the loss function. 

In the proposed model, additional information is incorporated into the key and value 
inputs of the Multi-Head Attention mechanism in SAKT. Specifically, we add information on 
digital textbook viewing related to the exercise and elapsed time, defined as the time a 
student takes to answer an exercise, following SAINT+(Shin et al., 2021). This modification 
enables the model to integrate the information that learners have studied to solve exercises. 
 To compute the similarity-weighted view time 𝑠𝑡𝑡 , we first obtain the view time 𝑣𝑡𝑡,𝑖 for 

each textbook page 𝑖 from log data. Then, we compute the cosine similarity between the 

exercise embedding 𝐞𝑡
𝑡𝑒𝑥𝑡 and each page embedding 𝐞𝑖

𝑝𝑎𝑔𝑒
. The exercise embedding is based 

on the concatenation of the exercise and choices, while each page embedding uses OCR-
extracted text from the textbook page. Both are computed using OpenAI’s text-embedding-3-
large model (OpenAI, n.d.). Finally, 𝑠𝑡𝑡   is calculated as the sum of 𝑣𝑡𝑡,𝑖  multiplied by the 

corresponding similarity scores, as shown in Equation (1). 

𝑠𝑡𝑡 = ∑ cos − sim(𝐞𝑡
𝑡𝑒𝑥𝑡 , 𝐞𝑖

𝑝𝑎𝑔𝑒
)𝑣𝑡𝑡,𝑖

𝐼

𝑖=1

 (1) 

Following SAINT+, elapsed time, representing elapsed time is incorporated into the 
model. The total elapsed time for a test is extracted from the LMS log data, and then averaged 
by dividing it by the number of exercises in the test. Before being fed into the model, these 
features are normalized to a range of 0 to 1 and then vectorized. 



 
Figure 1. Overall architecture of the proposed model. The parts highlighted in red indicate 

the elements newly added to the original SAKT framework. 
 
 

4. Experiments 
 

4.1 Datasets 
 
To evaluate our model, we used data from “Information Science” courses at Kyushu University 
offered during the 2021-2023 academic years. The dataset consists of six courses, and its 
statistics are shown in Table 1. 
 
Table 1. Dataset Statistics 

User Exercise Interaction Average Accuracy 

236 132 15,891 0.8173 

 

4.2 Experiments Setting 
 
In this study, the evaluation metrics were Area Under the ROC Curve (AUC), Accuracy (ACC), 
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and F1 Score (F1). For 
comparison, we used SAKT, SSAKT (Choi et al. 2020), and SAINT (Choi et al. 2020), which 
are KT models incorporating an attention mechanism. 
 For all models, we used the Adam optimizer with a learning rate of 0.001 and set the 
dropout rate to 0.1. The embedding dimension 𝑑 was selected from {50, 100, 150, 200}, and 

the number of heads ℎ in the Multi-Head Attention was selected from {1, 2, 5}. The number 
of training epochs was determined by early stopping. The dataset was split into training, 
validation, and test sets in a ratio of 8:1:1, and we constructed 10 different non-overlapping 



test splits. Among these, the split that achieved the highest average AUC on the test set was 
selected, and the results on this split were reported as the model’s performance. 
 

4.3 Experimental Results 
 
Table 2 presents the evaluation results for each model. This table shows that our model 
achieved the best performance. Since the proposed model outperforms SAKT, it is likely that 
the additional components we introduced contributed to the performance improvement. 
 
Table 2. KT performance prediction comparison 

Model AUC ACC MAE RMSE F1 

SAKT 0.6885 0.6276 0.4205 0.4745 0.6758 

SSAKT 0.6216 0.5865 0.4586 0.4888 0.6148 

SAINT 0.5039 0.5145 0.4946 0.5069 0.6190 

Ours 0.7016 0.6380 0.4159 0.4715 0.6877 

 

4.4 Attention Weights 
 
Figure 2 compares attention weights of SAKT and our model, alongside similarity-weighted 
view time and elapsed time for a learner. Each heatmap shows queries (vertical) attending to 
past keys (horizontal). Our model focuses attention on keys 1–9 and 28–30, aligning with high 
view time, and suppresses attention on 31–34. This suggests it emphasizes content 
relevance, unlike SAKT’s broader distribution. 
 

 
Figure 2. Comparison of SAKT attention weights (left), Ours attention weights (center), and 
normalized time features (right: normalized similarity-weighted view time on top, normalized 

elapsed time on bottom). 
 

4.5 Ablation Study 
 
The results of the ablation study on the impact of similarity-weighted view time and elapsed 
time are shown in Table 3. SAKT+ST represents a model that adds only similarity-weighted 
view time to SAKT, while SAKT+ET represents a model that adds only elapsed time to SAKT. 
From this table, it can be observed that the model incorporating both features achieved the 
highest accuracy in four out of five evaluation metrics, except for ACC. Additionally, SAKT+ST 
outperformed SAKT in all evaluation metrics, whereas SAKT+ET only outperformed SAKT in 
AUC but not in the other metrics. 

These results suggest that combining the two features is effective in enhancing the 
predictive performance of Knowledge Tracing. Furthermore, the superiority of SAKT+ST over 
SAKT+ET can be attributed to the greater influence of similarity-weighted view time on 
Attention Weights, as discussed in Section 4.4. 



Table 3. KT performance prediction comparison in ablation study 

Model AUC ACC MAE RMSE F1 

SAKT 0.6885 0.6276 0.4205 0.4745 0.6758 

SAKT+ST 0.6963 0.6398 0.4191 0.4730 0.6853 

SAINT+ET 0.6900 0.6237 0.4210 0.4776 0.6705 

Ours 0.7016 0.6380 0.4159 0.4715 0.6877 

 

4.6 Discussion and Limitations 
 
Our model shows improved accuracy by using textbook viewing data, but there are limitations. 
The method depends on the availability of detailed log data and may not generalize to different 
courses or institutions. Also, the content similarity is based on simple text matching, which 
could be refined. 
 
 

5. Conclusion 
 
In this study, we proposed a Knowledge Tracing model that incorporates learning-related 
information during student learning. By integrating digital textbook viewing time weighted by 
similarity to the exercises, our model enables more accurate predictions than models relying 
solely on in-exercise interactions. Experimental results on real-world datasets showed that our 
model outperforms existing methods, highlighting the value of incorporating external learning 
resources. However, generalizability remains limited by the availability of log data, and future 
work should refine similarity techniques and validate the approach in broader contexts. 
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