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Abstract: The digitalization of education has produced vast learning data, enabling 
AI-driven analytics to enhance teaching and learning. A key task is predicting 
academic performance to identify students needing extra support to pass. Much work 
has been done to improve the results of this task and their interpretation. However, 
prior research often isolates student behavior and learning materials, leading to a 
possible disconnect between learning content and behavior. This study bridges that 
gap by analyzing how students' interactions with digital content can predict academic 
performance. Educational log data are preprocessed to extract meaningful features 
that represent a combination of behavior and content, which are then refined using 
the Null Importance method. A LightGBM model is trained for prediction, and SHAP 
analysis reveals key behavioral factors linked to success. Results show that 
high-performing students engage more strategically and actively with critical 
materials. By combining behavioral and content-based analytics, this study offers a 
framework for early detection of learning issues and supports targeted, adaptive 
interventions to improve student outcomes. 
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1.​ Introduction 

With the rapid digitalization of education, Learning Management Systems (LMS) and digital 
materials have become widely adopted, generating vast amounts of educational data. This 
has sparked growing interest in data-driven education, where learning analytics and artificial 
intelligence enhance teaching and learning. However, research on effectively analyzing and 
utilizing such data is still in its early stages and there remains a limited understanding of 
what learner data can be collected, how to analyze it, and how to apply it to improve 
outcomes (Romero & Ventura, 2020). This study addresses these gaps by examining how 
students’ interactions with digital learning resources can be used to predict academic 
performance and uncover behavioral patterns linked to effective learning. We aim to support 
personalized and adaptive learning systems by developing and evaluating analytical 
methods. 

Related work has investigated factors influencing academic performance based on student 
interactions with digital platforms. For example, Paas et al. (1994) found that engaging with 
specific content and key pages correlates with better grades. Other research has linked 
behaviors like highlighting, reviewing, and study timing to academic achievement (Akçapinar 
et al., 2020; Flanagan et al., 2022; Oi et al., 2015), while device usage has also been shown 
to impact outcomes (Sung et al., 2016). These findings highlight the importance of both 
behavioral and contextual factors. 
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However, many previous studies examine behavior and content separately (Akçapinar et al., 
2020; Flanagan et al., 2022). Our research integrates these aspects, recognizing that not 
only what students study but also how they engage with materials affects performance. For 
instance, briefly viewing a key resource may offer little benefit, whereas deep engagement, 
such as note-taking or repeated review, can lead to better outcomes. 

To test this, we preprocess behavioral log data and engineer features such as binary 
indicators for material access. Due to the large dataset, we apply the Null Importance 
method to retain only the most relevant features. A LightGBM model is then trained to 
predict academic performance. Finally, we use SHAP (SHapley Additive Explanations) to 
interpret the model’s predictions. SHAP identifies the behavioral patterns and learning 
materials most influential to student success, providing actionable insights for early 
intervention and personalized support. This integrated approach demonstrates the value of 
combining behavioral and content-based analytics to enhance educational outcomes. 

2.​ Method 
 
2.1​ Dataset 

The dataset used in this study originates from the 4th Educational Data Analysis Competition 
(EDE, 2025) and was collected via the LEAF Platform (Flanagan & Ogata, 2018). It contains 
597,832 student operation records and score data for up to 1,000 students. The dataset 
comprises four files: three hierarchical operation log files, containing data from 5 weeks, 10 
weeks and all weeks of a 15 week Japanese junior highschool course. Another file contains 
the final cumulative student score record. Each operation log records detailed learning 
activities, including the following attributes: 

●​ userid: A unique identifier for each student. 
●​ contentid: The ID of the learning material accessed. 
●​ operationname: The type of operation, such as "OPEN," "ADD BOOKMARK," "ADD 

MARKER," and so on. 
●​ pageno: The page number within the content where the operation occurred. 
●​ marker: Annotations made by students, such as marking content as "difficult" or 

"important." 
●​ memo_length: The length of any notes added by the student. 
●​ devicecode: The type of device used (e.g., "pc" or "mobile"). 
●​ eventtime: The timestamp of the operation. 

The final academic performance contains students' quiz scores: 

●​ userid: A unique identifier for each student. 
●​ score: The quiz score of the corresponding student. 

By integrating the operation logs with quiz scores, this dataset enables the analysis of 
learning behavior patterns and their correlation with academic performance. The data 
structure allows for investigating factors such as how different engagement strategies 
influence student outcomes and which operations are most predictive of success. 

2.2​ Data Preprocessing and Feature Engineering 

Our method adopts the same model architecture as the previous method (Akçapinar et al., 
2020; Flanagan et al., 2022), but the key difference lies in our data processing and feature 
engineering. The previous method treats content and operations as separate factors, 
assuming only important content or operations affect student performance. This is 
problematic, for instance, if a student skips essential content, it cannot be assumed they've 



mastered it. Our method addresses this by considering both content importance and the type 
of operations performed. 

We implemented a structured preprocessing pipeline to convert raw operation logs into 
meaningful features. While we retain some common steps, such as deduplication and 
standardizing operation names, our method differs significantly in how learning behavior is 
quantified. We filtered content and page-level operations using a quantile-based threshold to 
retain only frequently accessed items. We then generated features such as binary content 
access flags, operation counts, estimated time spent per content, and the number of distinct 
operation types to reflect behavioral diversity. We introduced n-grams (n = 1, 2, 3) from 
operation sequences within each content to model sequential behavior. We also 
incorporated user annotations (e.g., marking content as “important” or “difficult,” note 
frequency/length), device usage, and temporal features like hourly activity, weekday usage, 
and study intervals (first 5, 10, and 15 weeks). Finally, we applied the Null Importance 
method for feature selection and ensured all inputs were formatted as floating-point values 
for model compatibility. This end-to-end pipeline yields a more behaviorally informative 
dataset, leading to improved performance prediction compared to previous methods. 

2.3​ Model Selection and Analysis 

To accurately predict student performance, we employ LightGBM, a gradient-boosting 
framework known for its efficiency, scalability, and ability to handle large datasets with 
missing values (Ke et al., 2017). The model is trained on preprocessed student operation 
data and quiz scores, with multiple iterations to improve robustness. The dataset is split into 
training and test sets based on study periods (5, 10, and 15 weeks), using a random 
sampling strategy over 10 trials to ensure diversity. After feature selection, LightGBM is 
tuned with key hyperparameters such as the number of leaves and minimum child samples 
to balance model complexity and generalization. Its histogram-based algorithm reduces 
memory usage and training time, while support for early stopping and feature importance 
makes it well-suited for educational data mining. 

For interpretability, SHAP (SHapley Additive Explanations) is employed to analyze feature 
contributions (Lundberg & Lee, 2017). SHAP provides global and local explanations, fairly 
attributing each feature’s impact even when features are correlated. This helps identify key 
behavioral patterns associated with academic success and offers actionable insights for 
personalized learning. LightGBM and SHAP form a transparent and practical framework for 
predicting student performance and analyzing educational data. 

2.4​ Evaluation 

Root Mean Squared Error (RMSE) is used to evaluate the model’s predictive accuracy by 
measuring the difference between predicted and actual quiz scores. Since RMSE penalizes 
more significant errors more heavily, it provides a reliable indicator of overall prediction 
quality. To assess model performance, we evaluate RMSE across test sets corresponding to 
study periods of 5, 10, and 15 weeks. The evaluation is repeated over multiple iterations to 
ensure result stability, and the RMSE values are averaged. This approach allows us to 
examine how well the model generalizes across different stages of student learning. 

3.​ Results 
 
3.1​ Prediction Performance 

We conducted comprehensive experiments to evaluate our method (OM) against a previous 
method (PM), using Root Mean Squared Error (RMSE) as the evaluation metric. As shown 
in Table 1, OM outperforms PM particularly in the shorter periods achieving lower RMSE 
values, and narrower confidence intervals in others, indicating more accurate and stable 



predictions of student performance. In the table, LR denotes the learning rate, and Train 
represents the RMSE on the training set. The evaluation results are reported across four 
subsets: 5w, 10w, 15w, and All, each corresponding to different student operation data time 
frames. Precisely, 5w reflects RMSE using the first five weeks of data, 10w uses the first ten 
weeks, 15w includes the first fifteen weeks, and All represents the overall mean RMSE 
across the entire evaluation set. 

Table 1. Mean RMSE Prediction Performance Between OM and PM.  

 Train 5w 10w 15w All 
PM​

(LR=0.05) 
0.5426±0.0310 8.5902±1.0052 7.6383±0.6442 7.4984±0.6938 7.9330±0.6997 

OM​
(LR=0.05) 

0.4916±0.0416 8.1084±1.0906 7.6939±0.5404 7.5190±0.5864 7.7914±0.6288 

PM​
(LR=0.01) 

2.8137±0.0520 8.5941±1.0581 7.5549±0.6346 7.5481±0.7513 7.9265±0.7088 

OM​
(LR=0.01) 

2.6372±0.0626 8.1782±1.1648 7.6121±0.4954 7.5514±0.6842 7.8000±0.6829 

 

Figure 1. SHAP value(Learning Rate=0.05) 

3.2​ Feature Importance 

After completing all experiments, we conducted a SHAP analysis to evaluate the contribution 
of each feature to the model’s predictions. The results are shown in Figure 1, where the 
vertical axis lists the features, the color bar indicates feature values, and the horizontal axis 
shows their positive or negative impact on the predicted outcomes. Due to space 
constraints, only the top 15 features are displayed. This analysis offers practical insights into 
which student behaviors are most influential. For instance, the feature 
contentidoperationname_s…63ad3d3db-ADD_BOOKMARK reflects how often a student 
bookmarked a specific learning material—an action associated with better academic 
performance, likely indicating perceived value or intent to revisit. In contrast, 
contentidoperationname_s…39a63ad3db-PAGE_JUMP captures how often students 
skipped that content, which is linked to lower performance, possibly due to disengagement. 



These findings highlight the importance of learning content and student interaction patterns, 
offering valuable guidance for instructional strategies and validating the effectiveness of our 
approach. 

4.​ Discussion and Conclusion 

In summary, we propose a feature processing method that outperforms previous approaches 
and provides practical value for identifying effective learning materials and improving 
teaching strategies. Our results show that not all frequently used materials equally benefit 
student performance; more important than access frequency is how students engage with 
the content—deep, intentional operations such as note-taking and repeated review lead to 
better outcomes, while passive use has limited impact thus reaffirming results in previous 
research (Akçapinar et al., 2020). Unlike prior work on usage counts or simple metrics (Paas 
et al., 1994; Akçapinar et al., 2020), our method incorporates engagement quality and 
context. By highlighting the importance of meaningful operation, this study contributes to 
learning analytics. It supports the development of adaptive systems that recommend key 
materials and effective ways to use them. Some possible limitations to this method are that it 
will be dependent on specific learning materials that were present in the training data, and 
this could hinder the generalizability of the method for predicting performance on reading 
behavior. However it highlights that the analysis of learning contents in addition to reading 
behavior could lead to better performance prediction and warrants further investigation in 
future research. 
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