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Abstract: Early childhood education (ECE) involves rich, informal, and multimodal
learning processes that are difficult to assess with traditional methods. This paper
presents a novel framework that integrates Multimodal Large Language Models
(MLLMs) into ECE learning analytics to capture children’s spontaneous
expressions—such as drawings, speech, gestures, and social interactions—in a
scalable, child-centered manner. The system includes multimodal data collection,
MLLM-based feature extraction, automated developmental analytics, and
educator-in-the-loop feedback. A real-world case from a rural kindergarten illustrates
the framework’s ability to generate interpretable indicators and actionable insights. We
discuss opportunities for individualized assessment and developmentally appropriate
practices, as well as challenges related to interpretability, privacy, and equity. This
work demonstrates the potential of MLLMs to support holistic, play-based learning
analytics in early childhood settings.
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1. Introduction

Early childhood is a crucial period for cognitive, emotional, social, and motor development,
forming the foundation for lifelong learning and well-being (Burns & Bowman, 2001). Yet,
capturing the complexity and individuality of children’s learning remains challenging
(Crescenzi-Lanna, 2020). Traditional assessments—Ilike standardized tests, checklists, and
observations—offer only fragmented views and often lack scalability, contextual depth, and
real-time responsiveness (Shepard, 2000).

Learning analytics offers a promising response by providing data-driven insights into
learning (Siemens & Long, 2011), but its use in early childhood education (ECE) is still limited.
Although multimodal data—such as speech, drawings, and interactions—can be collected
non-invasively, analyzing such complex, unstructured input remains difficult (Crescenzi-Lanna,
2020; Blikstein & Worsley, 2016).

Recent advances in Multimodal Large Language Models (MLLMs) present new
opportunities for integrating learning analytics into ECE (Alayrac et al., 2022; Tsimpoukelli et
al., 2021). These models can interpret diverse data forms, enabling scalable, child-centered
insights into developmental trajectories.

In this paper, we introduce an MLLM-powered learning analytics framework grounded
in play-based and constructivist theories (Vygotsky, 1978; Piaget, 1951). Our framework
bridges raw multimodal data and meaningful developmental insights by analyzing children's
drawings, verbal narratives, and movement patterns to infer indicators across cognitive, social,
emotional, and motor domains.



2. Related Work
2.1 Learning Analytics and Multimodal Approaches in Early Childhood Education

Learning analytics has traditionally focused on structured digital traces—such as grades,
logins, and content access—primarily in higher education or online settings (Nguyen et al.,
2022). In early childhood education (ECE), however, learning is embodied, exploratory, and
multimodal, making these approaches less effective. Most ECE applications involve
educational games with predefined outcomes and structured tasks, offering limited insight into
spontaneous and contextual learning (Agus et al., 2018).

To overcome the limitations of traditional approaches, researchers have explored
multimodal methods that capture the richness of early learning environments (Ochoa &
Worsley, 2016). By integrating video, audio, and visual artifacts, these methods offer deeper
insights into children's cognitive and social behaviors (Blikstein & Worsley, 2016). Techniques
such as facial recognition (Ramakrishnan et al., 2019), speech analysis (Oviatt et al., 2018),
and eye-tracking (Giannakos et al., 2019) provide more comprehensive data, but often
depend on complex, rule-based systems that are hard to scale. A more scalable and
pedagogy-aligned approach is still needed for multimodal learning analytics in ECE.

2.2 Advances in Multimodal Large Language Models

Multimodal Large Language Models (MLLMs), such as Flamingo (Alayrac et al., 2022), GPT-4
with vision (Achiam et al, 2023), and MM-REACT (Yang et al., 2023), are designed to interpret
and integrate multiple data types including text, images, audio, and video. These models have
demonstrated impressive performance in tasks ranging from visual question answering to
reasoning about diagrams and understanding speech in context (Tsimpoukelli et al., 2021).
Their ability to generalize across modalities with minimal fine-tuning opens new possibilities
for analyzing the spontaneous and creative outputs of young children.

Although applications of MLLMs in education are still emerging, there are early signs of
their potential. For instance, Bewersdorff et al. (2024) proposed a MLLM-based framework to
support multimodal content creation and personalized feedback in science education. Xing et
al. (2024) highlights MLLMs’ applications in language learning, STEM education, and medical
training. Lee et al. (2024) developed an MLLM-based conversational agent to support art
appreciation education through interactive multimodal dialogue. However, integrating MLLMs
into ECE settings remains largely unexplored—particularly in ways that align with
child-centered pedagogies and developmental theory.

3. MLLM-Based Learning Analytics Framework in ECE

We propose a child-centered framework using MLLMs to interpret young children’s
spontaneous multimodal outputs. It moves beyond rule-based systems, offering real-time,
developmentally appropriate insights from data like drawings, narratives, and play.

3.1 Theoretical Foundation

Learning analytics framework for ECE should be grounded in developmental theories that
reflect how young children learn and express themselves. Constructivist theory emphasizes
learning through active, multimodal engagement (Piaget, 1951), while socio-cultural theory
highlights the role of social interaction and individualized support within the Zone of Proximal
Development (Vygotsky, 1978). Our framework aligns with these views by leveraging MLLMs
to interpret children’s spontaneous outputs—such as drawings and narratives—without
disrupting natural play. It supports developmentally appropriate practice (Copple &
Bredekamp, 2009), emphasizing transparency, educator interpretation, and ethical
safeguards. Rather than scoring or labeling, it aims to surface meaningful patterns that inform



responsive teaching and holistic assessment. This framework operationalizes constructivist
and sociocultural theories by mapping child-generated multimodal data to interpretable
features that reflect developmental domains and support educator-guided scaffolding.

3.2 Framework Overview

This framework consists of four components that collectively support the automated and
interpretable analysis of young children's multimodal learning data, integrating Al-driven
processing with educator input as Figure 1 shown. Multimodal Data Collection and Storage
gathers various forms of child-generated data—including activity videos, audio, drawings,
transcripts, and environmental information—and stores them in a centralized database for
integrated access and analysis. MLLM-supported Feature Construction and Extraction
employs a Multimodal Large Language Model (MLLM) to generate interpretable feature
schemas and structured feature matrices. These features are derived from multimodal inputs
using MLLM-based prompts that extract values such as peer mentions and semantic
alignment, verified through educator feedback. Automated Analytics and Visualization
quantifies developmental indicators using clustering and similarity metrics, with results shown
through interactive dashboards (e.g., radar and network diagrams) for longitudinal and
group-level analysis. MLLM-supported Feedback generates constructive suggestions for
children’s development. Educators interact with the system to review Al-generated insights,
contribute feedback, and apply the results in practice, completing the human-in-the-loop cycle.
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Figure 1. Overview of the MLLM-Based Learning Analytics Framework in ECE
3.3 Case lllustration

We collected data from a kindergarten class of 29 children, where children engaged in daily
one-hour free play, then drew and described their experiences. Narratives were transcribed
and corrected by their teacher. ChatGPT was used to generate a feature table (see example in
Table 1) and analyze each child’s drawing and narration (see Figure 2). In addition, we
presented a social network and a radar chart displaying multiple developmental domains
based on children's data over one semester, along with Al-generated suggestions based on
results, as shown in Figure 3. All necessary consents were obtained from their parents and
teachers, with data anonymized and stored securely under institutional ethical approval.

Table 1. Parts of Al-generated Interpretable Feature Schema

Feature Name Data Source Description Example
Mentioned Peer Narrative text  Number of peers | played with A and B”
Count mentioned in the narration — 2 peers
Number of Drawing Total number of human 1 (solo) vs 4 (group)
Characters figures in the drawing
Text-Image Narrative text ~Semantic consistency Said “we built a castle”

Alignment Score & Drawing between narration and + drew a castle




drawing

Child's narrative: Today we played a water maze. We used a small ball and rolled it to create a maze. Then we used pieces from a

bag to guide it, and we treated that as our maze. At first, we started with something simple—a straight line. Sometimes there were
obstacles. [ felt that this water maze was starting to get a bit tricky. As we kept playing, | started to feel the ball wasn't very fun
anymore, so we switched to a building block that could roll—a cylinder...

Feature Value Reasoning
Mentioned Peer 1 Mentions “hefhim” multiple times,
Count suggesting at least one peer is involved
Number of 2 Two human figures drawn
Characters

Text-Image High Narration describes a water maze, and

Alignment Score the drawing clearly represents it

Creativity and imagination | Fina motor development

Cognitive Physical

Numeracy and géometry Gross mbdtor development

Callabora¥r Emotjah recognition

Social Emotional

Communication Empathy

- Observation: Peer interactions are mostly gender-segregated, —:7 Observation: This domain shows one of the lowest scores in the
except for Students #06 and #18. - cognitive area.
Al Suggestion: Al suggestion:
1. Use mixed-gender activities like building or role-play to promote 1. Introduce more play-based math activities, such as block sorting,
collaboration. counting games, and pattern-based puzzles.
2. Pair children across genders during free play to encourage 2. Use everyday contexts (e.g., snacks, classroom objects) to
inclusive interaction. embed basic math talk during routines,

Figure 3. An Example of Datar VisUaIization and Al Suggestions

4. Opportunities, Challenges and Future Directions

The integration of MLLMs into early childhood learning analytics presents promising
opportunities. By interpreting children's multimodal expressions—such as drawings, speech,
and social interactions—these models offer a scalable, child-centered means to infer
developmental trajectories. Such capabilities can enhance formative assessment, support
individualized instruction, and reduce the burden on educators by generating actionable
insights grounded in children's natural play.

However, several challenges must be addressed to ensure responsible and effective
deployment. First, MLLMs need to adapt to the often ambiguous and diverse nature of young
children’s communication. We suggest co-designing prompt templates with educators,
enhancing both interpretability and contextual relevance. Second, the lack of transparency in
model outputs may hinder educator trust and application. Embedding educator feedback in
the loop can improve clarity and alignment with pedagogical needs. Third, ethical concerns
around privacy, consent, and cultural sensitivity remain critical. All data used in our framework
is anonymized, locally stored, and encrypted to ensure confidentiality. To promote equity,
future work will incorporate more culturally and linguistically diverse datasets, supporting
inclusive and fair analytics across early learning contexts.
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