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Abstract: This study developed a programming‑learning support system that blends 

the self‑explanation strategy with generative artificial intelligence (Gen AI). The system 
automatically generates adaptive questions from students’ submitted code and 
provides instant feedback through a chatbot to guide self‑explanation and reflection. A 

16‑week experiment conducted in a Python course showed that students with high 

chatbot interaction significantly outperformed their low‑interaction peers in 
learning‑strategy gains, especially in the use of rehearsal strategies. Correlational and 
regression results further confirmed a positive influence of interaction frequency on 
strategy improvement. The findings show that Gen AI assistance can enhance 
programming learning and promote strategic learning behaviors, highlighting its 
practical value for adaptive instruction. 
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1. Introduction 
 
With the rapid advancement of technology, students’ ability to leverage emerging tools has 
become a central concern in education. Programming practice nurtures logical reasoning 
and problem‑solving skills while familiarizing learners with cutting‑edge algorithms, data 
science, and machine‑learning techniques (Ogegbo & Ramnarain, 2021). 

However, effectively assessing students’ grasp of programming concepts and providing 
deep feedback in class often faces constraints of manpower and time (Hao et al., 2022). 
With the recent advances and wide adoption of generative-AI technologies such as 
ChatGPT (Popovici, 2023), researchers have begun exploring how these tools can be 
integrated into programming education. In particular, the self-explanation strategy—
prompting learners to reflect on and articulate the code they have written—has been shown 
to promote deep understanding and knowledge internalization (Lehtinen et al., 2021). 
Therefore, developing a system that can automatically generate questions tailored to 
students’ code and engage them in adaptive interaction via generative AI opens new 
avenues for programming instruction. 

This study designed such a system, combining generative AI with self-explanation prompts. 
Through experimental teaching and learning-behavior analysis, we investigate its effects on 
students’ programming comprehension, learning-strategy use, and self-explanation 
behaviors, offering practical guidance for educators seeking to employ generative AI for 
adaptive tutoring. 

 
 
 
 



2. The Self-Explanatory Adaptive Chemistry Companion System 
 
The system delivers two core functions: (1) adaptive question generation and (2) real-time 
self-explanation feedback. Early in the semester, the instructor provides foundational theory 
and hands-on guidance. After each instructional segment, students complete a programming 
assignment. Once an assignment is submitted, the AI question-generation module analyzes 
the actual code and produces individualized questions. During the following class meeting, 
students interact with the chatbot, explaining their answers and revising them based on 
instant feedback—thereby strengthening their grasp of programming principles. 

 

 

3. Research Method 
 

3.1 Instructional context and participants  
 
The study was embedded in a 16-week course titled “Python Data-Mining Practice.” Topics 
ranged from basic Python syntax to data analysis and machine-learning models. Thirty 
graduate students from a northern Taiwanese university constituted the final valid sample. 

 

3.2 Procedures 
 
In the preparation phase we finalized course content and assignments and adopted three 

learning-strategy subscales—rehearsal, critical thinking, and metacognitive self-regulation—
from Pintrich (1991) Motivated Strategies for Learning Questionnaire (MSLQ). We then built 
the system’s front-end, back-end, and database to support classroom interaction and log 
collection. 

During the instructional phase, Week 1 covered course orientation and pre-test 
questionnaires (five-point Likert scale). From Weeks 2–15, each lesson ended with a take-
home programming task; the next week, students tackled self-explanation questions 
generated from their own code, using chatbot feedback to refine their explanations. In Week 
16, the same questionnaires were administered to capture changes in learning strategies 
and students’ perceptions of the system. 

In the analysis phase, questionnaire data and system usage logs were examined to test our 
hypotheses and inform instructional improvements. 
 
 

4. Results 
 

4.1 Pre‑test equivalence  
 

Students were split into high- and low-interaction groups by the median number of chatbot 
turns. Mann-Whitney U tests showed no significant pre-test differences in overall learning 
strategies (U = 102, z = -0.44, p = .663), rehearsal (U = 100.5, z = -0.50, p = .614), critical 
thinking (U = 89.5, z = -0.97, p = .333), or metacognitive self-regulation (U = 100, z = -0.52, 
p = .603), indicating baseline equivalence. 
 

4.2 Post‑test comparison  
 

Dunn–Bonferroni pairwise tests assessed post-test differences. The high-interaction group 
scored significantly higher on rehearsal strategies (Md = 4.25) than the low-interaction group 
(Md = 3.75), adjusted p = .006 < .01. Although the high-interaction group showed modest 



advantages in overall strategy use, critical thinking, and metacognitive regulation, these did 
not reach significance (adjusted p > .10). Thus, frequent chatbot engagement particularly 
encouraged active rehearsal behaviors, whereas higher-order strategies may require longer 
cultivation. 

 
 

5. Conclusion 
 
Integrating self-explanation techniques with a cutting-edge generative-AI chatbot within 
programming education environments offers a multifaceted approach to enhance student 
learning. This integration facilitates a deeper understanding of core programming concepts by 
encouraging students to articulate their reasoning processes. Through an iterative dialogue 
format, students are prompted to engage in self-monitoring—actively assessing their 
understanding—and rehearsal—practicing problem-solving strategies repeatedly. Such 
interactive engagement has been shown to significantly increase the use of rehearsal 
strategies, especially among students who participate in high levels of interaction with the AI 
system. This effect supports the efficacy of the system’s ability to initiate a comprehensive and 
active learning cycle. This study also observes that there were no statistically significant 
improvements in students' critical thinking skills and metacognitive regulation measures.  
 
Overall, this research presents a promising and scalable framework that empirically 
demonstrates the potential of generative AI to serve as an adaptive tutor. It underscores the 
importance of customized dialogue scripts tailored to diverse learner profiles and suggests 
extending observational periods in future studies. Longer-term investigations could provide 
deeper insights into how higher-order cognitive and metacognitive strategies evolve over time, 
ultimately refining the AI's role in fostering autonomous, strategic learners across varied 
programming contexts. 
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