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Abstract: Novice programmers often struggle to articulate their problem-solving steps, 
underscoring the need for metacognitive awareness and self-regulated learning 
strategies. However, most automated assessment tools in university programming 
courses do not effectively support these essential skills. To address this gap and guide 
the design of more supportive assessment tools, this study aims to investigate the 
metacognitive challenges novice learners face when learning Python programming, 
focusing on both their behavioral patterns and metacognitive strategies. The significant 
differences in students’ program development behaviors and metacognitive learning 
strategy use between novice and advanced programmers were identified. Our findings 
highlight the need for better-designed automated assessment tools in the future. 
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1. Introduction 
 
Programming is a complex task that demands not only syntactic and algorithmic knowledge 
but also the ability to plan, monitor, and reflect one’s thinking—essential skills encompassed 
by metacognitive and self-regulated learning (SRL) strategies, which are known to enhance 
learners’ lifelong learning ability (Li & Ma, 2025). Nonetheless, many programming beginners 
struggle to apply these strategies effectively (Bergin et al., 2005).  This leads to relying on trial-
and-error methods that bypass deeper reflection on the problem, resulting in confusion or 
misinterpretation of requirements (Loksa et al., 2016). Additionally, many university courses 
now utilize Automated Assessment Tools (AATs) that provide immediate error messages and 
pass/fail indicators. While convenient, these narrow feedback loops do little to foster 
metacognitive growth as students can easily become preoccupied with correcting superficial 
mistakes (Loksa & Ko, 2016). This gap highlights a critical need for instructional and 
technological support that can scaffold learners’ metacognition and self-regulation. 

Although recent studies have begun using LLMs to generate reflective prompts for 
learners (Gong et al., 2024; Li & Ma, 2025), it is difficult to build truly useful assistant tools 
without a solid understanding of the strategies they employ and the specific obstacles they 
encounter. This paper aims to examine how students approach coding tasks, highlighting the 
range of strategies they employ and the specific obstacles they encounter. Our findings will 
serve as a foundation for designing AATs that not only test the correctness of learners’ code 
but also cultivate their metacognitive learning skills by reflectively solving problems. 
 

2. Method 
 

2.1 Participants 
 
This study was conducted in a laboratory environment. A total of 22 students (14 males and 8 
females, with an average age of 24) were recruited from a national university in Japan. The 
students were from different departments. Their programming experience ranges from zero 
months to 9 years. Informed consent was obtained from all participants for this study. 
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Table 1. Program development behavior from novice and advanced programming learners 

Group N Program 
creation (ns) 

Checking 
solution (ns) 

Checking solution 
with unpassed * 

Checking solution 
with passed (ns) 

Novice 14 19.07 12.5 9.5 3 

Advanced 8 15.88 8.0 4.25 3.75 

 

2.2 Learning Tasks and Study Design 
 
Students were invited to enroll in an introductory Python programming course in a Moodle 
Learning Management System (LMS). They were asked to read the lecture’s introductory 
materials, which covered fundamental concepts in Python programming (e.g., basic functions) 
and solve four beginner-level coding questions using CodeRunner, an open-source Moodle 
plugin automated assessment tool. Students were given the flexibility to complete the task at 
their own pace within a 35-minute learning session. They could read the problem statement, 
input their code, and submit their solutions to be automatically checked against pre-defined 
test cases. All reading and interaction activities were logged automatically by the Moodle 
platform. After completing the learning session, all students participated in face-to-face semi-
structured interviews, each lasting approximately 30 minutes. The interviews focused on three 
main areas: planning (“How do you plan to solve the programming questions?”), self-reflection 
(“What would you do after submitting your code solutions?”), and overall experience (“Which 
aspects were successful, and which areas require improvement?”). 
 

2.3 Data Analysis 
 
Students were divided into novice (n = 14) and advanced (n = 8) groups based on their prior 
programming experience. Students’ interactions throughout the programming tasks were 
collected, including program creation, checking solution with unpassed and with passed. A 
thematic analysis was conducted on interview responses, using a coding scheme adapted 
from prior SRL research in programming (Silva et al., 2024) to identify metacognitive strategies. 

Three analyses between the two groups were conducted in this study: (1) behavioral 
differences during programming were analyzed using Wilcoxon rank-sum or t-tests after 
normality testing; (2) the frequency of planning and self-reflection strategies was compared; 
and (3) key metacognitive difficulties were extracted based on interview. 
 

3. Results 
 

3.1 Differences in Program Development Behavior 
 
Table 1 presents the differences in program development behavior between the two groups. 
The average number of program creation actions was slightly higher for novice learners (M = 
19.07) than for advanced learners (M = 15.88), but the difference was not statistically 
significant (W = 69.5, p = .373). Similarly, while novice learners checked their solutions more 
frequently (M = 12.5) than advanced learners (M = 8.0), this difference did not reach 
significance (t = 1.98, p = .062). However, a separate analysis revealed that novices exhibited 
significantly more checking behavior with unpassed (t = 2.13, p = .046), with a large effect size 
(Cohen’s d = 0.822). 
 

3.2 Differences in Metacognitive Learning Strategy Use 
 
Table 2 summarizes the metacognitive learning strategies used by the two groups. Overall, 
novices employed fewer strategies than their advanced peers across all seven strategy types. 
Among novices, the most frequently used strategies were P1: understanding the problem and 
R3: code review (both 42.9%). In contrast, advanced learners more frequently applied P1 
(87.5%), P3: program logic planning (75%), R3 (87.5%), and R4: code optimization (50%), 
indicating a broader and deeper use of metacognitive strategies. 



Table 2. Frequency and proportion of strategy use by novice and advanced learners 

Strategy 
Count Proportion 

Novice (n=14) Advanced (n=8) Novice (n=14) Advanced (n=8) 

P1 6 7 42.9% 87.5% 

P2 2 3 14.3% 37.5% 

P3 2 6 14.3% 75% 

R1 3 2 21.4% 25% 

R2 1 0 7.1% 0% 

R3 6 7 42.9% 87.5% 

R4 0 4 0% 50% 
* P1: Understanding the Problem; P2: Problem definition; P3: Program logic planning; R1: Achievement self-assessment; R2: 
Effort self-assessment; R3: Code review; R4: Code optimization. 

 

3.3 Metacognitive Difficulty Extracted from Interview 
 
According to interviews, novices commonly struggle with misunderstandings of problem 
descriptions, syntax, and semantic comprehension, as well as unfamiliarity with problem-
solving in programming, unawareness of knowledge gaps, limited error interpretation skills, 
and poor time and resource management. In contrast, advanced learners reported issues such 
as misunderstanding error messages, insufficient attention to foundational knowledge (e.g., 
mathematical concepts), and overreliance on code assistance tools. 
 

4. Conclusion 
 
This study examines the metacognitive challenges that learners face when studying 
programming, with a focus on SRL behavioral patterns and strategies. Our findings show that 
novice learners employ fewer and less diverse metacognitive strategies than advanced 
learners, particularly in areas such as program logic planning and code optimization. Interview 
data further revealed that novices struggle with comprehending problems, as well as 
interpreting errors and managing their time. At the same time, advanced learners face issues 
such as overlooking fundamental knowledge. These findings suggest both the potential and 
the necessity of integrating SRL support into AATs, especially improved support for error 
interpretation, structured scaffolds for planning, and better prompts for reflection. 
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