
Majumdar, R. et al. (Eds.) (2025). Proceedings of the 1st International Conference on Learning Evidence
and Analytics. Asia-Pacific Society for Computers in Education

An Adaptive Quiz Generation System for
Moodle using moosh and LLM

Toshihiro KITAa*, Rwitajit MAJUMDARa, Izumi HORIKOSHIb & Hiroaki OGATAc

aKumamoto University, Japan
bUchidayoko Institute for Education Research, Japan

cKyoto University, Japan
*kita@rcis.kumamoto-u.ac.jp

Abstract: This paper describes a system for automating adaptive quiz creation within
Moodle. Leveraging `moosh` and the OpenAI API, it provides personalized learning.
An initialization script sets up the course, while a periodically run script analyzes
learner performance on existing quizzes. This analysis drives the generation of new,
tailored quizzes that focus on individual weaknesses, offering remedial or
supplementary exercises to enhance the learning experience. Helper functions are
modularized for reusability.

Keywords: LMS, Question generation, Personalized learning, Generative AI

1. Introduction

Manually creating personalized Moodle follow-up quizzes for adaptive learning is impractical,
especially as existing automated question generation attempts (Kurdi, et al., 2020) are not
integrated into general LMS. This paper introduces a Python system automating
personalized quiz creation. It utilizes `moosh` (Muras, n.d.) for Moodle interaction and an
LLM (such as GPT-4o-mini) for generating new questions. The system operates in two
phases: Initialization, setting up initial Moodle quizzes; and an Adaptive Update Cycle,
periodically analyzing quiz results to generate targeted supplementary quizzes for individual
learner weaknesses.

2. System Architecture and Usage

The Moodle adaptive quiz system (Kita, n.d.) consists of three Python scripts and one XML
data file.
The `adaptive_quiz_moosh1.py` script handles Initialization, running once to set up a new
Moodle course (Figure 1 left). It creates personalized sections, adds an initial quiz to each
section, and populates these quizzes with questions from `moodle-quest1.xml`.
The `adaptive_quiz_moosh2.py` script executes the Adaptive Update Cycle periodically. It
identifies original quizzes, fetches participant scores, and interprets these scores as bit flags
to determine which specific questions were answered incorrectly (e.g., "Question No.1,
Question No.3 are incorrect"). This feedback then guides the generation of new quiz content:
the script uses the OpenAI API with specific prompts to create new Moodle XML questions
that target the concepts from the incorrectly answered questions. A second prompt ensures
strict Moodle XML formatting. Finally, these newly generated "supplementary" quizzes are
added to the corresponding learner sections in Moodle (Figure 1 right).
`adaptive_quiz_moosh_mod1.py` provides shared helper functions for the other scripts.

To set up the adaptive quiz system, configure `MOODLE_DIR` and the OpenAI API key.
Prepare an initial Moodle quiz XML. Run `adaptive_quiz_moosh1.py` once to create the
Moodle course and initial quizzes. Periodically run `adaptive_quiz_moosh2.py` (e.g., via
cron) to analyze results and generate supplementary quizzes, appearing in learner sections
to focus on needed practice areas.

Figure 1. A newly created Moodle course and the quizzes by the script (left) and
supplementary quizzes automatically added to each section (right)

3. Discussion

Although question generation functions such as the Generative AI Question Bank (Grevisse,
n.d.) already exist, a mechanism lilke this framework for dynamically updating content based
on the user's performance has not yet been implemented.

This automated framework provides basic adaptive quizzing in Moodle by identifying
incorrectly answered questions (via bitwise score interpretation) and prompting an LLM to
generate related, personalized follow-up questions. Its strengths include significant
automation, tailoring content to individual weaknesses, and leveraging existing Moodle
infrastructure with AI-powered question generation.

However, the system has limitations: its adaptation logic is fragile, relying on a specific
bitwise score interpretation from `defaultgrade` setup, which may not accurately reflect
understanding or progress. LLM output quality can vary, leading to inaccurate or poorly
formatted questions, and the number of generated questions is fixed. Future work should
focus on more sophisticated adaptive algorithms, robust score analysis, and improved error
checking for AI-generated content. Although dependency on external LLM services can raise
operational concerns such as usage fees, running LLM on an on-premise server using
Ollama is an effective way to avoid these concerns.

4. Conclusion

The described system presents a practical approach to implementing adaptive quizzes in
Moodle by integrating the moosh command-line tool with the generative capabilities of the
OpenAI API. While the current adaptation logic based on bitwise score interpretation is
relatively simple, the framework successfully automates the process of analyzing learner
performance and generating targeted supplementary quiz content. This demonstrates the
potential of combining existing LMS tools with AI to create more personalized and potentially
more effective learning experiences.

References

Grevisse, C. (n.d.). Generative AI Question Bank. https://moodle.org/plugins/qbank_genai
Kita, T. (n.d.). moodle-quiz-autoupdate. https://github.com/kita-toshihiro/moodle-quiz-autoupdate
Kurdi, G., Leo, J., Parsia, B., Sattler, U., & Al-Emari, S. (2020). A systematic review of automatic

question generation for educational purposes. International Journal of Artificial Intelligence in
Education, 30, 121-204. doi: https://doi.org/10.1007/s40593-019-00186-y

Muras, T. (n.d.). moosh. https://moosh-online.com/

	An Adaptive Quiz Generation System for Moodle using moosh and LLM
	1. Introduction
	2. System Architecture and Usage
	3. Discussion
	4. Conclusion
	References

